首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel voltammetric method using the Ppyox/NFR/Au (poly pyrrole – nuclear fast red – gold) modified electrode was developed for simultaneous measurement of various combinations of ascorbic acid (AA) and methyldopa (MDA). Polypyrrole film was prepared by incorporation of nuclear fast red (NFR) as doping anion, during the electropolymerization of pyrrole onto a gold (Au) electrode in aqueous solution using cyclic voltammetric (CV) method, and then it was overoxidized at constant potential. Differential pulse voltammetry was utilized for the measurement of both analytes using modified electrode. Well‐separated voltammetric peaks were observed for ascorbic acid (AA) and methyldopa at the Ppyox/NFR/Au modified electrodes with peak separation of 0.210 V. It has been found that under optimum condition (pH 3.0), the oxidation of AA and MDA at the surface of the electrode occurs at a potential about 260 and 50 mV less positive than unmodified Au electrode respectively. The current catalytic oxidation peaks showed a linear dependent on the concentration of AA and MDA in the range of 9.0×10?6 to 1.0×10?3 and 1.0×10?7 to 2.0×10?5 mol L?1 respectively. The detection limit of 5.8×10?6 and 5.0×10?8 mol L?1 (S/N=3) were obtained for AA and MDA respectively. The modified electrode was used for determination of AA and MDA in some real samples such as human serum and tablet.  相似文献   

2.
《Analytical letters》2012,45(15):2633-2643
Abstract

A new polymer (polyhistidine) modified electrode has been fabricated and was applied to the catalytic oxidation of ascorbic acid (AA), reducing the overpotential by 400 mV. The catalytic rate constant of the modified electrode for the oxidation of AA was determined using a rotating electrode. The catalytic current was linearly dependent on the ascorbic acid concentration between 5×10?5 and 2×10?3 M. The catalytic effect on the AA resulted in the separation of the overlapping voltammograms of AA and dopamine (DA) in a mixture. This allowed the determination of AA in the presence of DA. The electrode was rather stable even after several months; a reproducible response of AA was obtained.  相似文献   

3.
An electrochemical method for the preparation of poly(pyronin B) film was proposed in this paper. A poly(pyronin B) (poly(PyB)) film modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electrocatalytic oxidation of reduced form of nicotinamide adenine dinucleotide (NADH). The poly(PyB) film modified electrode surface has been characterized by atomic force microscope (AFM), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV‐visible absorption spectrophotometry (UV‐vis) and cyclic voltammetry (CV). These studies have been used to investigate the poly(PyB) film, which demonstrates the formation of the polymer film and the excellent electroactivity of poly(PyB) in neutral and even in alkaline media. Due to its potent catalytic effects towards the electrooxidation of NADH at lower potential (0.0 V), poly(PyB) film modified electrode can be used for the selective determination of NADH in real samples because of dopamine, ascorbic acid and uric acid oxidation can be avoided at this potential. The catalytic peak currents are linearly dependent on the concentrations of NADH in the range of 1.0×10?6 to 5.0×10?4 mol/L with correlation coefficients of 0.999. The detection limits for NADH is 0.5×10?6 mol/L. Poly(PyB) modified electrode also shows good stability and reproducibility due to the irreversible attachment of polymer film at GCE surface.  相似文献   

4.
The catalytic activities of gold, palladium, and rhodium particles and their binary systems electrodeposited on the surface of a glassy-carbon electrode in the oxidation of dopamine and ascorbic acid are compared. As compared to individual noble metals, the Au-Pd binary system exhibits a higher catalytic activity that manifests itself in a multiple increase in the oxidation current of the mediator and in a decrease in the oxidation potential of the substrate. It is found that dopamine and ascorbic acid can be simultaneously determined by voltammetry at an electrode modified with the Au-Pd binary system. The catalytic currents of substrate oxidation are linear functions of the concentrations in the ranges from (1 × 10?3 to 1 × 10?7) M for dopamine and from (5 × 10?3 to 1 × 10?6) M for ascorbic acid.  相似文献   

5.
A method for forming a composite film on the surface of a graphite electrode is proposed. Conditions for detecting the maximum catalytic current under batch and flow conditions are determined. A procedure for the electrocatalytic determination of ascorbic acid at the graphite electrode modified with a polyaniline film containing palladium particles is proposed. The catalytic effect of this electrode manifests itself by a ~300-mV decrease in the peak potential of ascorbic acid oxidation and by a multiple increase in the peak current of ascorbic acid oxidation as compared to the unmodified electrode. The linear dependence of the electrocatalytic response of the composite electrode on the concentration of ascorbic acid is observed down to 1 × 10?8 M and 2.5 nmol of ascorbic acid under batch and flow-injection analysis conditions, respectively.  相似文献   

6.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

7.
Differential pulse and cyclic voltammetry were applied for the oxidation of mixture of uric acid and ascorbic acid at the surface of carbon paste/cobalt Schiff base composite electrode. The electrooxidation of these compounds at bare electrode is sluggish, and there is no suitable peak separation between them. However, using cobalt methyl salophen as modifier, two well-defined anodic waves with a considerable enhancement in the peak current and a remarkable peak potential separation near 315 mV are obtained. It can improve the kinetics of electron transfer for both compounds remarkably. All these improvements are created because of the electrocatalytic property of cobalt Schiff base complex. The effect of some parameters such as pH and scan rates were studied. All the anodic peak currents for the oxidation of ascorbic acid and uric acid shifted toward more negative potential with an increase in pH, revealing that protons have taken part in their electrode reaction processes. The best peak separation with appropriate current was obtained for pH 4.0. A linear range of 5.0?×?10?4 to 1.0?×?10?8 and 1.0?×?10?3 to 1.0?×?10?8 M with detection limit of 8.0?×?10?9 and 8.0?×?10?9 M was obtained for ascorbic acid and uric acid using differential pulse voltammetry at the surface of modified electrode, respectively. Analytical utility of the modified electrode has been examined successfully using human urine samples and vitamin C commercial tablets.  相似文献   

8.
A glassy carbon electrode (GCE) modified with docosyltrimethylammonium chloride (DCTMACl) is used for simultaneous determination of dopamine (DA) and ascorbic acid (AA) using differential pulse voltammetry (DPV) technique in 0.10 mol·L?1 phosphate buffer solution of pH 5.0. The cationic surfactant DCTMACl modified film has a positive charge. DA exists as the positively charged species, whereas AA is the negatively charged one in the solution. Thus, at DCTMACl film-modified GCE, the oxidation peak potential of AA shifts toward less negative potential and the peak current of AA increases a little, while the oxidation peak potential of DA shifts toward more positive potential and peak current decreases greatly in comparison with that on bare electrode. The two anodic peaks are separated around 200 mV. Under optimal conditions, the catalytic peak currents obtained from DPV increase linearly with concentrations of DA and AA in the ranges of 1.0?×?10?5 to 1.0?×?10?3?mol·L?1. This electrode has good reproducibility, high stability in its voltammetric response, and low detection limit (micromolar) for both AA and DA. The modified electrode has been applied to the determination of DA and AA in injection.  相似文献   

9.
DNA was attached on the surface of an ethylenedidamine/polyglutamic(En/PGA) modified glassy carbon electrode (GCE) to create a novel voltammetric sensor (DNA/En/PGA/GCE) for dopamine (DA). This modified electrode exhibited a linear voltammetric response for DA in the range from 1.0×10?7 mol L?1 to 1×10?5 mol L?1, with a detection limit of 2×10?8 mol L?1. The detection of DA was found to be unaffected by the presence of ascorbic acid, uric acid, serotonin and folic acid. The method proposed was applied to detect DA in pharmaceutical dosage and human blood serum with good satisfactory results.  相似文献   

10.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

11.
The poly-glutamic acid modified electrode has been prepared by direct electro-polymerization of D-glutamic acid on the surface of glassy carbon electrode. In pH 4.2, 0.1 mol L?1 HAc-NaAc buffer solution, the film modified electrode exhibited remarkable enhancement effect to the electrochemical responses of ferulic acid. The action mechanism was preliminarily explored. In the range of 2.0 × 10?7 to 1.0 × 10?5 mol L?1, and 1.0 × 10?5 to 3.0 × 10?4 mol L?1, the oxidation peak current has a linear relationship to the concentration, and the detection limit was estimated to be 7.0 × 10?8 mol L?1. This method has been adopted to detect trace amount of ferulic acid in Chinese proprietary medicine, and the recovery was from 97.8 to 102.4%.  相似文献   

12.
《Analytical letters》2012,45(16):3025-3037
Abstract

Iridium oxide film modified microelectrode with a tip diameter of 25 µm was constructed using anodically grown iridium oxide film. The iridium oxide film, which was formed at the tip of the iridium wire by cyclic voltammetry in dilute sulfuric acid, showed excellent catalytic activity towards the oxidation of epinephrine. The stability and electrochemical properties of iridium oxide film modified microelectrode along with catalytic oxidation of epinephrine was studied. An oxidation peak was observed at 0.28 V. The electron‐transfer number (n) was 2. The iridium oxide film modified microelectrode was used as a detector in flow injection system for determination of epinephrine. Under the optimized conditions, the calibration curve was linear in the concentration range of 1.0×10?8 to 1.0×10?5 mol/l for epinephrine, with a detection limit of 1.0×10?9 mol/l. The iridium oxide film modified microelectrode was used for direct determination of the epinephrine in human serum samples. The flow injection analysis was precise detection method of epinephrine and time saving device.  相似文献   

13.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

14.
We report a simple and sensitive voltammetric sensor for the determination of chlorpromazine (CPZ) based on Ni?Al layered double hydroxide (NiAlLDH) modified glassy carbon electrode (GCE). NiAlLDH was simply electrodeposited on GCE surface in a very short time. The response linear range was 1×10?3–1×10?9 mol L?1, with a detection limit of 1×10?9 mol L?1. The NiAlLDH film showed well defined and well separate peaks for dopamine, ascorbic acid, uric acid and CPZ in the same solution. The proposed electrode was used to measure the active pharmaceutical ingredient of CPZ tablet as a real sample.  相似文献   

15.
This communication describes the determination of an essential amino acid, L ‐methionine (L ‐Met) in the presence of important interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using a glassy carbon electrode modified with an electropolymerized film of 3‐amino‐5‐mercapto‐1,2,4‐triazole (p‐AMTa). The bare glassy carbon electrode fails to show a voltammetric signal for L ‐Met in the presence of AA and UA at pH 7.2. However, the p‐AMTa electrode separates the voltammetric signals of AA, UA and L ‐Met with pronounced oxidation currents. The amperometric current of L ‐Met was increased linearly from 1.0×10?7 to 1×10?4 M and the detection limit was found to be 4.12×10?10 M (S/N=3).  相似文献   

16.
《Electroanalysis》2006,18(12):1193-1201
A chemically modified carbon paste electrode with 2,7‐bis(ferrocenyl ethyl)fluoren‐9‐one (2,7‐BFEFMCPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The diffusion coefficient (D=1.89×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient, α (=0.42) of ascorbic acid oxidation at the surface of 2,7‐BFEFMCPE was determined using electrochemical approaches. It has been found that under an optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 300 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak currents show a linear dependence on the ascorbic acid concentration and linear analytical curves were obtained in the ranges of 8.0×10?5 M–2.0×10?3 M and 3.1×10?5 M–3.3×10?3 M of ascorbic acid with correlation coefficients of 0.9980 and 0.9976 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2δ) were determined to be 2.9×10?5 M and 9.0×10?6 M with cyclic voltammetry and differential pulse voltammetry, respectively. This method was also examined for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

17.
A glassy carbon electrode was modified with electropolymerized film of diphenylamine sulfonic acid (DPASA). Electropolymerization was performed by cyclic voltammetry in 0.1 M KCl solution. The modified electrode showed an excellent electrocatalytic effect towards oxidation of dopamine (DA) and ascorbic acid (AA). Electrostatic interaction between the negatively charged poly(DPASA) film and either cationic DA species or anionic AA species favorably contributed to the redox response of DA and AA. Anodic peaks of DA and AA in their mixture were well separated by ca 168 and −11.8 mV. The proposed modified electrode was utilized for selective determination of dopamine in the concentration range of 5.0 × 10t7–2.0 × 10−5 M in the presence of high concentration of ascorbic acid. Detection limit was 6.5 × 10−9 M.  相似文献   

18.
A sensitive and selective electrochemical method for the determination of dopamine (DA) was developed using a calix[4]arene crown‐4 ether (CACE) film modified glassy carbon electrode (GCE).The modified electrode exhibited good electrocatalytic activity for electrochemical oxidation of DA in the pH 6.00 Britton–Robinson buffer solution, and ascorbic acid (AA) did not interfere with it. The diffusion coefficient (D=2.7×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient (α=0.54) of DA at the surface of CACE were determined using electrochemical approaches. The catalytic oxidation peak currents showed a linear dependence on the DA concentration and a linear analytical curve was obtained in the range of 2.0×10?5–1.0×10?3 M of DA with a correlation coefficient of 0.9990. The detection limit (S/N=3) was estimated to be 3.4×10?6 M. This method was also examined for the determination of DA in an injection sample. In addition, effects of possible interferences were investigated. The present work shows the potential of the proposed method for the fabrication of a modified electrode, as it can be effectively used for voltammetric detection of DA.  相似文献   

19.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

20.
《Electroanalysis》2005,17(7):607-612
Based on the inhibition effect of dopamine and epinephrine on Ru(bpy) ‐tripropylamine electrogenerated chemiluminescence system, the excellent properties of carbon nanotube, and the cation permselectivity of Nafion film, an electrogenerated chemiluminescence inhibition method for determination of dopamine and epinephrine in the presence of ascorbic acid at carbon nanotube/Nafion‐Ru(bpy) composite film modified glassy carbon electrode was described. The results showed that the proposed method was sensitive and selective for the determination of dopamine and epinephine. The linear calibration range was from 1.6×10?9 M to 3.2×10?5 M and 5×10?8 M to 6×10?5 M for dopamine and epinephrine, respectively. 200‐fold excess of ascorbic acid did not interfere with the determination of 1 μM dopamine and epinephrine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号