首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
The performance of a badge type passive sampler for the determination of sulfur dioxide is described. The trapping agent is triethanolamine. Analysis is performed by ion chromatography. Thus, the method allows the simultaneous detection of sulfur dioxide and nitrogen dioxide. The sampler was tested in the laboratory and in the field. The intercomparison with independent methods in the field showed very good agreement against two active sampling methods. Regression analyses (the results of the passive sampler always represent the y-axes) gave r2 = 0.81 and k = 1.07 ± 0.01 for the intercomparison with an annular denuder technique and r2 = 0.92 and k = 0.96 ± 0.01 for the intercomparison with a commercial fluorescence sulfur dioxide analyzer. The average reproducibility in the field was 7% (RSD). The detection limit was 0.18 μg SO2/m3 for an exposure time of two weeks. Received: 9 February 1998 / Revised: 22 June 1998 / Accepted: 26 June 1998  相似文献   

2.
A passive “badge-type” sampling device for the determination of gaseous ammonia was developed. The collection substrate is phosphoric acid. The sampler can be used for outdoor and indoor sampling of ammonia in the concentration range from 0.05 μg/m3 to 10 mg/m3. The performance was tested in the laboratory and in the field against an annualar denuder, a filter pack and an impinger technique. The intercalibration showed that the passive sampler compares very well with active samplers (r2=0.99; k=1.05). The average reproducibility of the sampler was 8%. Hence the badge sampler is well suited for the determination of ammonia in a wide range of concentrations and particularly for application under rural background conditions. The sampling rate of the device was calculated according to a simple multi-layer model.  相似文献   

3.
    
A passive badge-type sampling device for the determination of gaseous ammonia was developed. The collection substrate is phosphoric acid. The sampler can be used for outdoor and indoor sampling of ammonia in the concentration range from 0.05 g/m3 to 10 mg/m3. The performance was tested in the laboratory and in the field against an annualar denuder, a filter pack and an impinger technique. The intercalibration showed that the passive sampler compares very well with active samplers (r2=0.99; k=1.05). The average reproducibility of the sampler was 8%. Hence the badge sampler is well suited for the determination of ammonia in a wide range of concentrations and particularly for application under rural background conditions. The sampling rate of the device was calculated according to a simple multi-layer model.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

4.
Optical sensors for dissolved sulfur dioxide   总被引:2,自引:0,他引:2  
Colorimetric sensing membranes for the determination of sulfur dioxide were developed and characterized. These films can be used for sensing trace amounts of sulfur dioxide both in the gas phase and in aqueous solutions. Lipophilic pH indicator ion pairs were immobilized in hydrophobic gas-permeable silicone and phenyl substituted ormosil. On exposure to SO2 the films undergo a visually detectable color change from blue to yellow. No cross-sensitivity to pH and CO2 was observed. Response times depend on the thickness of the sensing membranes, the indicator concentration in the film as well as on the respective SO2 concentration. Membranes with response times of < 1 min (t90) were developed. The sensitivity to sulfur dioxide depends on the pKa of the indicator. An increase in the pKa results in a lower detection limit. The new optical SO2 sensors are chemically and mechanically stable and are easy to manufacture. The storage stability of the membranes is at least 7 months if stored in the dark. Received: 17 December 1997 / Revised: 12 June 1998 / Accepted: 15 June 1998  相似文献   

5.
Three different methods for sampling and determination of nitrogen dioxide in urban air are compared: an NO/NOx-monitor and an active (pumped) and a passive sampling method. For the latter two methods, sodium iodide is used as absorbent. For weekly averages the results from the passive sampler are within 10–20% of the results for the two other methods in the concentration range 15–30 μg NO2/m3. The detection limit for the passive sampler is 1 μg NO2/m3 (7 days), the precision is 5% and the accuracy is estimated to 20%. The active iodide method agrees very well with the NO/NOx-monitor. Compared on 24 h basis for a period of 3 months, covering a concentration range of 5–45 μg NO2/m3, the deviation between the two methods is within 5%, and the absorption capacity of the iodide reagent is excellent as the breakthrough is below 1%.  相似文献   

6.
Three different methods for sampling and determination of nitrogen dioxide in urban air are compared: an NO/NOx-monitor and an active (pumped) and a passive sampling method. For the latter two methods, sodium iodide is used as absorbent. For weekly averages the results from the passive sampler are within 10–20% of the results for the two other methods in the concentration range 15–30 μg NO2/m3. The detection limit for the passive sampler is 1 μg NO2/m3 (7 days), the precision is 5% and the accuracy is estimated to 20%. The active iodide method agrees very well with the NO/NOx-monitor. Compared on 24 h basis for a period of 3 months, covering a concentration range of 5–45 μg NO2/m3, the deviation between the two methods is within 5%, and the absorption capacity of the iodide reagent is excellent as the breakthrough is below 1%. Received: 3 December 1996 / Revised: 11 March 1997 / Accepted: 15 March 1997  相似文献   

7.
Abstract

Copolymerization of α-methylstyrene and N-cyclohexylacrylamide was carried out in toluene at 60 ± 1°C using azobisisobutyronitrile as the free-radical initiator. The total concentration of the comonomers was 1.5 mol·L?1 in the solvent. The copolymers were characterized by 1H-NMR and 13C-NMR spectroscopy, and the copolymer compositions were determined primarily from the 1H-NMR spectra. The reactivity ratios were found to be r 1 = 0.08 ± 0.01 and r 2 = 2.45 ± 0.03 by the Fineman-Ross method, and r 1 = 0.06 ± 0.01 and r 2 = 2.43 ± 0.08 by the Kelen-Tüdös method. Mean sequence lengths in the copolymer were estimated from r 1 and r 2 values.  相似文献   

8.
(Vinyl acetate)/(ethyl acrylate) (V/E) and (vinyl acetate)/(butyl acrylate) (V/B) copolymers were prepared by free radical solution polymerization. 1H-NMR spectra of copolymers were used for calculation of copolymer composition. The copolymer composition data were used for determining reactivity ratios for the copolymerization of vinyl acetate with ethyl acrylate and butyl acrylate by Kelen-Tudos (KT) and nonlinear Error in Variables methods (EVM). The reactivity ratios obtained are rv = 0.03 ± 0.03, rE = 4.68 ± 1.70 (KT method); rv = 0.03 ± 0.01, rE = 4.60 ± 0.65 (EV method) for (V/E) copolymers and rv ? 0.03 ± 0.01, rB ? 6.67 ± 2.17 (KT method); rv = 0.03 ± 0.01, rB = 7.43 ± 0.71 (EV method) for (V/B) copolymers. Microstructure was obtained in terms of the distribution of V- and E-centered triads and V- and B-centered triads for (V/E) and (V/B) copolymers respectively. Homonuclear 1H 2D-COSY NMR spectra were also recorded to ascertain the existence of coupling between protons in (V/E) as well as (V/B) copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
The spontaneous copolymerization of N-phenylmaleimide (NPMI) (M1) with ethyl α-phenylacrylate (EPA)(M2) were carried out in dioxane at 85°C. A high alternating tendency was observed. The monomer reactivity ratios were r1 = 0.07 ±0.01 and r2 = 0.09 ± 0.02. The maximum copolymerization rate and molecular weight occurs at 70–80 mol% (M1) in feed ratio. The spontaneous alternating copolymerization is considered to be carried out via a contact-type charge transfer complex (CTC) formed between the monomers. Thermogravimetric analyses (TGA) indicate the resulting copolymers have high thermal stability. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2927–2931, 1998  相似文献   

10.
Furan may be formed in food under heat treatment and is highly suspected to appear in indoor air. The possible exposure to indoor furan raises concerns because it has been found to cause carcinogenicity and cytotoxicity in animals. To determine airborne furan, solid-phase microextraction (SPME) technique was utilised as a diffusive sampler. The Carboxen/Polydimethylsiloxane (CAR/PDMS, 75 μm) fibre was used, and the SPME fibre assembly was inserted into a polytetrafluoroethene tubing. Furan of known concentrations was generated in Tedlar gas bags for the evaluation of SPME diffusive samplers. After sampling, the sampler was inserted into the injection port of a gas chromatograph coupled with a mass spectrometer (GC/MS) for thermal desorption and analysis. Validation of the SPME device with active sampling by charcoal tube was performed side by side as well. The charcoal tube was desorbed by acetone before analysis with GC/MS. The experimental sampling constant of the sampler was found equal to (9.93 ± 1.28) × 10?3 (cm3 min?1) at 25°C. Furthermore, side-by-side validations between SPME device and charcoal tube showed linear relationship with r = 0.9927. The designed passive sampling device for furan has the advantages of both passive sampling and SPME technique and looks suitable for assessing indoor air quality.  相似文献   

11.
Rate coefficients for the gas‐phase reaction of isoprene with nitrate radicals and with nitrogen dioxide were determined. A Teflon collapsible chamber with solid phase micro extraction (SPME) for sampling and gas chromatography with flame ionization detection (GC/FID) and a glass reactor with long‐path FTIR spectroscopy were used to study the NO3 radical reaction using the relative rate technique with trans‐2‐butene and 2‐buten‐1‐ol (crotyl alcohol) as reference compounds. The rate coefficients obtained are k(isoprene + NO3) = (5.3 ± 0.2) × 10?13 and k(isoprene + NO3) = (7.3 ± 0.9) × 10?13 for the reference compounds trans‐2‐butene and 2‐buten‐1‐ol, respectively. The NO2 reaction was studied using the glass reactor and FTIR spectroscopy under pseudo‐first‐order reaction conditions with both isoprene and NO2 in excess over the other reactant. The obtained rate coefficient was k(isoprene + NO2) = (1.15 ± 0.08) × 10?19. The apparent rate coefficient for the isoprene and NO2 reaction in air when NO2 decay was followed was (1.5 ± 0.2) × 10?19. The discrepancy is explained by the fast formation of peroxy nitrates. Nitro‐ and nitrito‐substituted isoprene and isoprene‐peroxynitrate were tentatively identified products from this reaction. All experiments were conducted at room temperature and at atmospheric pressure in nitrogen or synthetic air. All rate coefficients are in units of cm3 molecule?1 s?1, and the errors are three standard deviations from a linear least square analyses of the experimental data. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 57–65, 2005  相似文献   

12.
Copolymers of 2-sulfoethyl methacrylate, (SEM) were prepared with ethyl methacrylate, ethyl acrylate, vinylidene chloride, and styrene in 1,2-dimethoxyethane solution with N,N′-azobisisobutyronitrile as initiator. The monomer reactivity ratios with SEM (M1) were: vinylidene chloride, r1 = 3.6 ± 0.5, r2 = 0.22 ± 0.03; ethyl acrylate, r1 = 3.2 ± 0.6, r2 = 0.30 ± 0.05; ethyl methacrylate, r1 = 2.0 ± 0.4, r2 = 1.0 ± 0.1; styrene, r1 = 0.6 ± 0.2, r2 = 0.37 ± 0.03. The values of the copolymerization parameters calculated from the monomer reactivity ratios were e = +0.6 and Q = 1.4. Comparison of the monomer reactivities indicates that SEM is similar to ethyl methacrylate with regard to copolymerization reactivity in 1,2-dimethoxyethane solution. The sodium salt of 2-sulfoethyl methacrylate, SEM?Na, was copolymerized with 2-hydroxyethyl methacrylate (M2) in water solution. Reactivity ratios of r1 = 0.7 ± 0.1 and r2 = 1.6 ± 0.1 were obtained, indicating a lower reactivity of SEM?Na in water as compared to SEM in 1,2-dimethoxyethane. This decreased reactivity was attributed to greater ionic repulsion between reacting species in the aqueous medium.  相似文献   

13.
新型二氧化硫被动采样器的研制   总被引:1,自引:0,他引:1  
研究了一种新型二氧化硫被动采样器。考察了无纺布、定性滤纸和定量滤纸等吸收剂的载体在相同情况下对二氧化硫和二氧化氮的吸收效果 ,对吸收载体进行了优选。并针对低温地区和高温高湿的气候条件 ,确立了以三乙醇胺(TEA)为吸收主体 ,分别以乙二醇、丙三醇为添加剂的吸收体系。  相似文献   

14.
The microwave spectra of 13CH2OH-CHO, CH2OH-13CHO, and CH2OH-CH18O are reported and have been used in combination with previously published data on other monosubstituted glycolaldehydes to determine the substitution structure of the molecule as r(CO) = 1.209 Å, r(C-O) = 1.437 Å, r(C-C) = 1.499 Å, r(O-H) = 1.051 Å, r(C-Hald) = 1.102 Å, r(C-Halc) = 1.093 Å, r(O β H) = 2.007 Å, r(O β O) = 2.697 Å, ∠(C-CO) = 122°44', ∠(C-C-Hald) = 115°16', ∠(C-C-O) = 111°28', ∠(C-O-H) = 101°34', ∠(C-C-Halc) = 109°13', ∠(H-C-H) = 107°34', ∠(O-H β O) = 120°33', ∠(H β OC) = 83°41', and ∠(O-H, C0) = 24°14'. The intramolecular hydrogen bond and the other structural parameters are discussed and compared to related molecules. The dipole moment is redetermined to be μa = 0.262 ±0.002 D, μb = 2.33 ± 0.01 D, and μtot = 2.34 ± 0.01 D. Relative intensity measurements yielded 195 ± 30 cm?1 for the C-C torsional fundamental and 260±40 cm?1 for the lowest in-plane skeletal bending mode. Computations performed by the CNDO/2 method correctly predict the observed cis hydrogen-bonded conformer to be the energetically favoured one and in addition yield some indication of the existence of at least two other non-hydrogen-bonded forms of higher energy.  相似文献   

15.
Samples are burned in a Carlo Erba 1106 elemental analyzer over copper oxide with oxygen, injected into the carrier gas. Combustion gases are reduced with copper. Water is absorbed, and sulfur dioxide is separated from carbon dioxide and nitrogen in a very short column of Porapak QS. Sample size is upt ot 0.7 mg, one determination takes 5 min, and the sampler takes up to 196 samples. It can be continuously loaded, and the instrument can be left to work automatically overnight. For the micro determination, helium is the carrier gas, and sulfur dioxide is measured with a thermal conductivity detector. The standard deviation of 18 analyses of pure organic compounds was 0.0446% S. The detection limit is 0.5 μg S, or about 0.1% S in a normal 0.5-mg sample. For ultramicro and trace determination, nitrogen is the carrier gas, and the measurement is made with an electron capture detector. The detection limit is 0.002 μg S, or about 0.0004% (4 mg kg?1 S) in a normal 0.5-mg sample.  相似文献   

16.
A novel chemiluminescence(CL) flow system for sulfite is described based on electrostatically immobilized luminol on an anion exchange column. Sulfite is detected by the CL reaction with luminol bleeding from the column by hydrolysis. The calibration graph is linear in the range 3 × 10–7 to 1 × 10–5 mol/L, and the detection limit is 1 × 10–7 mol/L. Interfering metal ions co-existing in sample solutions could be effectively eliminated on-line by an upstream cation exchanger. A complete analysis could be performed in 1 min with a relative standard deviation of less than 5%. The system could be reused for over 50 h and has been applied successfully to the determination of sulfur dioxide in air. Received: 21 October 1997 / Revised: 23 February 1998 / Accepted: 26 February 1998  相似文献   

17.
Photopolymerization of the vinyl monomer (M) of methyl methacrylate (MMA) was kinetically studied by using near-UV/visible light at 40°C and employing a morpholine (MOR)–sulfur dioxide (SO2) charge-transfer (C-T) complex as the photoinitiator. The rate of polymerization (RP) was found to be dependent on the morpholine: sulfur dioxide mole ratio; the 1 : 2 (MOR–SO2) complex acted as the latent initiator complex C which underwent further complexation with the monomer molecules to give the actual initiating complex I. Using the 1 : 2 (MOR–SO2) C-T complex as the latent initiator, the observed kinetics may be expressed as RP [MOR–SO2]0.27[M]1.10. Benzoquinone behaved as a strong inhibitor. Polymers obtained tested positive for the incorporation of a sulphonate-type end group. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by a low initiator exponent and monomer exponent of greater than unity was explained on the basis of a prominent primary radical termination effect. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1973–1979, 1998  相似文献   

18.
Some organotransition metal complexes, bis (sulfur dioxide)tetrakis (triphenylphosphine oxide) manganese(II)dioxide [Mn(OPPh3)4I2(SO2)2] and bis(tribenzylphosphine)copper(II) thiophenolate [Cu(PBz3)2SPh], were identified as candidate coatings for the detection of sulfur dioxide on piezoelectric crystal sensors. After treatment to form the mono (sulfur dioxide) adduct, the first complex binds sulfur dioxide to reform the bis adduct, and can be used as a coating for an integrating piezoelectric sensor. The initial complex can be regenerated by placing the coated piezoelectric sensor under vacuum for 4 h. The specified copper complex was found to act as a reversible coating for the detection sulfur dioxide in the range 10–1000 mg l?1.  相似文献   

19.
The accurate measurement of ultra-trace concentrations of rare metals and platinum group elements in volcanic fluids is complicated by interferences, complex matrices, and preferential element partitioning. We analyzed condensed, high-temperature magmatic fluids collected from Kudryavy volcano (Kurile Islands, Russia) for Be, B, Rb, Sr, Mo, Ru, Rh, Pd, Cd, W, Re, Pt, Pb, Bi, and U using ICP-MS. The samples had three different matrices: 5 mol L–1 sodium hydroxide (NaOH, pH = 11), gas condensates of sulfuric acid (H2SO4, pH = 0), and solid elemental sulfur. Interferences and suppression/enhancement effects were investigated using standards in concentrated NaOH and H2SO4 solutions to determine adequate dilution for sample analyses, which then required very low levels of element detection (< 1 μg L–1 for most elements). Depending on the field sampling technique of volcanic gas vents, our results show significant differences in concentrations of some trace elements due to the precipitation of solid sulfur during gas condensation and variations in element volatility as a function of temperature. Received: 1 March 1998 / Revised: 1 July 1998 / Accepted: 7 July 1998  相似文献   

20.
Microwave spectra of thionyl chloride, SO35Cl2 and SO35Cl37Cl, in the frequency range 8–25 GHz have been analyzed. The rotational constants have been obtained from the low J transition frequencies. The rS coordinates of Cl atoms and the ro structure have been evaluated with some assumptions: r(S-O) = 1.435 ± 0.011± Å, r(S—Cl) = 2.072 0.005 Å, ∠ OSCl = 108.00 ± 0.06°, ∠ ClSCl = 97.15 ± 0.30°. Nuclear quadrupole coupling constants have been obtained for the SO35Cl2, species: xaa = ?25.02 ± 0.04 MHz, x(bb = ?0.25 ± 0.04 MHz, Xcc = 25.27 ± 0.08 MHz, and Xzz = ?96.75 MHz. The values obtained are compared with those of other workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号