首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
以三氯化钌和三氯化铈为原料,以无水乙醇为溶剂,采用热分解法在钛基材上制备了Ti/RuO2-CeO2二元氧化物涂层电极材料,利用XRD,SEM,HR-TEM分析方法对涂层组织结构进行表征,通过循环伏安和充放电曲线来研究涂层的超电容性质.结果表明,300℃烧结制备的电极可获得最大的比电容;烧结温度低于或者超过300℃,电极的超电容性能不佳.分析表明,Ti/RuO2-CeO2的超电容性能与其结构密切相关,氧化物的结构未稳定或发育良好,均不利于提高超电容性能.300℃时涂层形成带有纳米级微晶的非晶组织,获得了高的活性点数和电化学粗糙度.  相似文献   

2.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

3.
钌钛复合氧化物及其载铂催化剂的制备与表征   总被引:1,自引:0,他引:1  
以TiN纳米粉体和RuCl3为前驱体,采用浸渍热分解法合成了Ru0.1Ti0.9O2纳米粉体,并以其为载体利用固相反应制备了Pt/Ru0.1Ti0.9O2催化剂.通过X射线衍射和透射电镜观察到RuO2和TiO2之间形成了金红石相的固溶体,Pt被均匀地担载于Ru0.1Ti0.9O2表面.在0.5 mol/LH2SO4溶液中的极化曲线测试发现担载Pt与Ru0.1Ti0.9O2具有协同作用,因而具有优异的析氢、析氧电催化性能.质子交换膜燃料电池测试初步表明,Pt/Ru0.1Ti0.9O2具有高的氧阴极还原反应催化活性,进一步的反极实验证明其具有比Pt/C更高的稳定性.  相似文献   

4.
通过溶胶-凝胶和高温固相掺杂反应可控合成了形貌均匀、结晶性好的尖晶石型LiMn1.9Al0.1O3.95F0.05正极材料,探究了Al部分取代Mn、F部分取代O后对结构的影响,测试并比较了电极材料的倍率性能和循环充放电性能. 结果表明,尖晶石型LiMn1.9Al0.1O3.95F0.05和LiMn2O4有同样的晶型,但电极较传统的LiMn2O4电极倍率稳定性有显著提高. 在连续混合(如0.1C、0.5C和1C)充放电150次后,LiMn1.9Al0.1O3.95F0.05电极的容量仍能保持90%以上.  相似文献   

5.
用机械合金化法合成了Mg0.9Ti0.1Ni0.9X0.1(X=Mn, Zn, Co, Fe)系列合金. X射线衍射(XRD)结构分析表明, 用X部分替代Ni后, 促进了Mg0.9Ti0.1Ni合金的非晶化过程. 用Co和Fe部分替代Ni提高了合金的放电容量, 但却降低了合金的循环稳定性. 用Zn和Mn部分替代Ni提高了合金电极的循环寿命, 尤其是Mg0.9Ti0.1Ni0.9Zn0.1合金电极经10个充放电循环后, 其放电容量仍可达到313.8 mA·h/g. 对添加Co后的合金进行p-c-T测试发现, Mg0.9Ti0.1Ni0.9Co0.1合金的吸放氢容量明显比Mg0.9Ti0.1Ni合金高, 这与电化学所测到的结果一致.  相似文献   

6.
用机械合金化法合成了Mg0.9Ti0.1Ni0.9X0.1(X=Mn,Zn,Co,Fe)系列合金.X射线衍射(XRD)结构分析表明,用X部分替代Ni后,促进了Mg0.9Ti0.1Ni合金的非晶化过程.用Co和Fe部分替代Ni提高了合金的放电容量,但却降低了合金的循环稳定性.用Zn和Mn部分替代Ni提高了合金电极的循环寿命,尤其是Mg0.9Ti0.1Ni0.9Zn0.1合金电极经10个充放电循环后,其放电容量仍可达到313.8mA.h/g.对添加Co后的合金进行p-c-T测试发现,Mg0.9Ti0.1Ni0.9Co0.1合金的吸放氢容量明显比Mg0.9Ti0.1Ni合金高,这与电化学所测到的结果一致.  相似文献   

7.
刷涂热分解法制备Ti/SnO2-Sb2O5阳极及其性能   总被引:2,自引:0,他引:2  
通过刷涂热分解法制备了锑掺杂的钛基二氧化锡(Ti/SnO2-Sb2O5)涂层电极.在酸性介质中,用扫描电镜(SEM)、X射线衍射仪(XRD)、循环伏安和快速寿命测试等方法研究了Ti/SnO2-Sb2O5电极制备条件、电极结构、性能和寿命.结果表明,TFSnO2-Sb2O5电极涂层具有"干泥"结构,用锡锑摩尔比为9:1的涂液组成、在550℃烧结温度下制备的Ti/SnO2-Sb2O5的电极涂层平整致密,龟裂小,电极孔隙率小,稳定性最好.  相似文献   

8.
刷涂热分解法制备Ti/SnO2-Sb2O5阳极及其性能   总被引:1,自引:0,他引:1  
通过刷涂热分解法制备了锑掺杂的钛基二氧化锡(Ti/SnO2-Sb2O5)涂层电极. 在酸性介质中, 用扫描电镜(SEM)、X射线衍射仪(XRD)、循环伏安和快速寿命测试等方法研究了Ti/SnO2-Sb2O5电极制备条件、电极结构、性能和寿命. 结果表明, Ti/SnO2-Sb2O5电极涂层具有“干泥”结构, 用锡锑摩尔比为9:1的涂液组成、在550 ℃烧结温度下制备的Ti/SnO2-Sb2O5的电极涂层平整致密,龟裂小, 电极孔隙率小, 稳定性最好.  相似文献   

9.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

10.
在包含原料马来酸的硫酸溶液中, 通过原位阳极氧化法制备了Ti/TiO2膜电极, 然后采用极性转换技术在原溶液中电化学合成丁二酸. 采用XPS, XRD和SEM分析了膜电极上的元素组成、价态分布和氧化膜的晶相结构及表面形貌. 结果表明, 阳极氧化膜层内只含有Ti和O两种元素, 且Ti均为Ti4+; TiO2氧化膜是金红石相, 表观呈现带孔的条纹形貌. 通过循环伏安、恒电位阶跃和恒电流电解技术研究了Ti/TiO2原位氧化膜电极的电化学性质, 结果表明, 该膜电极对马来酸电还原合成丁二酸具有较好的电催化活性. 以钛基氧化钌电极(DSA)为阳极, Ti/TiO2原位氧化膜电极为阴极进行恒电流电解了实验. 结果表明, 丁二酸的还原产率为95.94%, 电流效率为95.57%, 产物纯度为99.28%, 熔点为185~187 ℃.  相似文献   

11.
IntroductionThereactionofchlorineevolutionisoneofthemostsignificantareasunderinvestigationinthefieldofelectrocatalysisduetoitsdirectimpactinelectro chemicaltechnology .Historically ,theconsumablean odessuchasgraphite ,sinteredFe3O4 orPbO2 activat edgraphite…  相似文献   

12.
<正>A series of nominal composition Ti/(ZrO_2)_x(RuO_2)_(1-x) (0.1≤x≤0.9) coatings chan- ged in 10% steps was deposited on titanium substrate from RuCl_3·nH_2O and ZrCl_4 containing ethanol solution by thermal decomposition method. The X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and electrochemical tests were performed to clarify the effects of ZrO_2 content on the structure and capacitive property of Ti/(ZrO_2)_x(RuO_2)_(1-x). The results show that by adding ZrO_2 into the coatings the degree of crystallization of RuO_2 decreases. The specific capacitance firstly increases and then deceases with the increase of ZrO_2 content in the mixed oxide coatings. The film of Ti/(ZrO_2)_(0.6)(RuO_2)_(0.4) consisting of amorphous matrix and fine nano-crystalline RuO_2 (about 4 nm) has the maximum specific capacitance of 713.27 F/g(RuO_2).  相似文献   

13.
研究了Bi4(Ti1/3Sn2/3)3O12掺杂对钛酸钡基陶瓷微观结构和介电性能影响。结果表明,掺杂Bi4(Ti1/3Sn2/3)3O12后钛酸钡基陶瓷晶粒明显长大,同时烧结温度可由1 280℃降低至1 180℃。系统的介电性能和Bi4(Ti1/3Sn2/3)3O12的掺杂量有密切关系。当Bi4(Ti1/3Sn2/3)3O12的掺杂量从0.5mol%增加到2mol%,体系的居里峰被明显压低和展宽,当掺杂量为2mol%时居里峰变得不明显。当Bi4(Ti1/3Sn2/3)3O12的掺杂量从0.5mol%增加到2mol%,系统的居里温度由131℃升高至139℃。当Bi4(Ti1/3Sn2/3)3O12的掺杂量为1mol%时,钛酸钡基陶瓷介电常数为1 930,介电常数温度变化率为5%(-55℃),13%(134℃),-8%(150℃),满足X8R标准。  相似文献   

14.
采用共沉淀法制备了Ce0.1+xTi0.5-xAl0.2Y0.1La0.1O1.8(0≤x≤0.4)材料, 并对所制备的材料进行了X射线衍射(XRD)和X射线光电子能谱(XPS)的表征, 测定了材料的比表面积(BET法)和储氧量(OSC), 同时采用氢气程序升温还原(H2-TPR)和氨气程序升温脱附(NH3-TPD)研究了材料的还原性能和表面酸性. 研究结果表明, Ce/Ti摩尔比大于1∶2的材料能形成立方萤石结构的固溶体, Ce/Ti摩尔比为1时, 材料表面Ce4+/Ce3+摩尔比达到最大; 随着Ce/Ti摩尔比的增大, 材料的储氧能力先增大后减小, 而TPR还原峰温则是先减小后增大, 当Ce/Ti摩尔比为1时, 材料的储氧量达到最大, 为660 μmol/g; 还原峰峰温最低, 为616 ℃. 以制备的材料为载体制备了一系列Pt/Ce0.1+xTi0.5-xAl0.2Y0.1La0.1O1.8三效催化剂, 并对催化剂进行了活性评价. 活性测试结果表明, 以Ce/Ti比为1的载体材料制成的催化剂对C3H8, CO和NO的起燃温度分别为236, 147和228 ℃, 表现出了优异的温度特性.  相似文献   

15.
The amorphous hydrous ruthenium oxide/mesoporous carbon composites (denoted as RuO2·xH2O/MC), obtained by loading small amount of amorphous hydrous ruthenium oxide nanoparticles ranged from 0.9 to 5.4% by weight of Ru (denoted as RuO2·xH2O) on mesoporous carbon (MC), were investigated for the first time and were used for supercapacitors. Electrochemical measurements showed that RuO2·xH2O/MC composites not only have an enhanced specific capacitance but also retain the superior rate capability of MC. The RuO2·xH2O/MC composite with Ru loading of 3.6 wt% exhibited an increase of the specific capacitance of approximately 57% (from 115 to 181 F/g) at the scan rate of 25 mV s−1 in 0.1 M H2SO4 aqueous electrolyte. The specific capacitance based on the mass of RuO2 was estimated to be 1,527 F/g, by subtracting the contribution from MC in the composite. Cycle performance tests for RuO2·xH2O/MC composite (3.6 wt% Ru) showed that approximately 2.8% loss of the total capacitance was observed after 1,000 cycles.  相似文献   

16.
Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.  相似文献   

17.
The high capacity of Ni-rich Li[Ni(1-x)M(x)]O(2) (M = Co, Mn) is very attractive, if the structural instability and thermal properties are improved. Li[Ni(0.5)Mn(0.5)]O(2) has good thermal and structural stabilities, but it has a low capacity and rate capability relative to the Ni-rich Li[Ni(1-x)M(x)]O(2). We synthesized a spherical core-shell structure with a high capacity (from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core) and a good thermal stability (from the Li[Ni(0.5)Mn(0.5)]O(2) shell). This report is about the microscale spherical core-shell structure, that is, Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) as the core and a Li[Ni(0.5)Mn(0.5)]O(2) as the shell. A high capacity was delivered from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core, and a high thermal stability was achieved by the Li[Ni(0.5)Mn(0.5)]O(2) shell. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2)/carbon cell had a superior cyclability and thermal stability relative to the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) at the 1 C rate for 500 cycles. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2) as a new positive electrode material is a significant breakthrough in the development of high-capacity lithium batteries.  相似文献   

18.
采用直流电弧等离子体喷射化学气相沉积法把石墨烯生长在钛(Ti)基底上,并采用电化学氧化聚合法在石墨烯表面沉积聚3,4-乙烯二氧噻吩(PEDOT),由此构造PEDOT/石墨烯/Ti电极。形貌及结构表征结果表明,电聚合200圈以上的PEDOT呈线状或泡沫状且均匀分布于石墨烯表面。电化学性能测试结果表明,PEDOT/石墨烯/Ti电极具有高的比电容和库伦效率;其电聚合次数为400圈时,与PEDOT/Ti电极相比,比电容提高42倍,其最大电势窗口可达1.4 V,而在0~1.2 V电势窗口范围内,扫描速度为10 mV·s-1时,比电容可达到269.6 mF·cm-2。  相似文献   

19.
年思宇  张燕  张国峰  秦攀  宋吉明 《化学通报》2019,82(11):989-994
以Co(NO_3)_2·6H_2O和Ni(NO_3)_2·6H_2O为钴源和镍源,采用溶剂热法一步合成了Co(OH)_2/Ni(OH)_2复合材料,通过煅烧该复合材料可得到NiCo_2O_4。采用XRD、SEM、BET等对材料进行了表征,结果表明,Co(OH)_2/Ni(OH)_2复合材料是薄片组成的花状形貌,比表面积为37. 48m~2/g。电化学性能测试表明,Co(OH)_2/Ni(OH)_2复合材料比NiCo_2O_4具有更高的比电容值和容量保持率。在0. 5A/g的电流密度下,复合材料比电容值可达到1097. 8F/g,而NiCo_2O_4比电容值仅为86. 1F/g。因此,与煅烧后的NiCo_2O_4材料相比,Co(OH)_2/Ni(OH)_2复合材料具有更加优良的电化学性能,这为高性能超级电容器材料的制备提供了一个新思路。  相似文献   

20.
改性二氧化钛负载贵金属Ru催化剂催化降解苯胺溶液   总被引:2,自引:0,他引:2  
苯胺类废水污染物具有结构复杂、浓度高、不易生物降解、生物毒性大等特点,传统的苯胺降解措施存在着许多弊端,很难达到排放标准.催化湿法氧化技术(CWAO)主要针对降解高浓度难降解的有机废水,表现出降解效率高、反应时间短、对生物毒性物质的废水降解效果良好等优点,越来越受到人们的重视.但催化剂在使用过程中,需要在高温高压下进行,且有机物降解产生了有机酸,使得催化剂的活性组分流失和载体的物理化学性质发生变化,导致其催化活性下降.因此,需要开发出一种降解活性高,性能稳定的催化剂成为此技术在工业中广泛应用的关键.本文采用溶胶凝胶法对二氧化钛进行改性,制备了Ti0.9Zr0.1O2和Ti0.9Ce0.1O2载体,采用过量浸渍法将三氯化钌负载到载体表面制备了2%Ru/Ti0.9Zr0.1O2和2%Ru/Ti0.9Ce0.1O2催化剂.在高温高压反应条件下,以苯胺为催化湿法氧化污染物,对不同催化剂湿法降解苯胺进行比较研究,系统地探究了催化降解的反应温度和反应压力对苯胺降解的影响.此外,利用HPLC-MS鉴定出催化降解产生的中间产物,确定了催化降解的反应路径图.在改性的催化剂中,2%Ru/Ti0.9Zr0.1O2催化剂表现出最高的催化降解活性和稳定性.在初始苯胺浓度4 g/L,催化剂浓度4 g/L,反应温度180℃,O2压力1.5 MPa下,反应时间5 h后,苯胺完全转化,COD转化率达88.3%.并且催化剂进行三次循环试验后,苯胺转化率仍接近100%.X射线衍射和N2物理吸附结果表明,Ce,Zr掺杂到TiO2晶格中形成了共溶体,其晶格尺寸更小,比表面积和孔体积更大.负载贵金属后,并未出现其他晶相,说明贵金属均匀分散在载体表面.透射电镜结果表明,贵金属负载在改性TiO2上表现出较好的分散性和较小的颗粒尺寸,为催化降解苯胺提供更多的催化活性位点,而Ru/TiO2催化剂表面,贵金属发生团聚现象且颗粒尺寸大.X射线光电子能谱结果表明,Ce,Zr的掺杂使得TiO2表面活性氧和四价Ru的含量增加,更多的表面活性氧成为催化降解苯胺的直接原因.H2程序升温还原结果表明,在300?400oC处还原峰对应于催化剂载体晶格氧的还原,改性后,其还原峰增至2倍,即使在贫氧环境下,改性催化剂可以及时从载体中释放晶格氧,为催化降解苯胺提供更多的活性氧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号