首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Results of Co and Ni substituted AlN in the zinc blende phase are presented. For spin up states, the hybridized N‐2p and Co/Ni‐3d states form the valance bands with a bandgap around the Fermi level for both materials, while in the case of the spin down states, the hybridized states cross the Fermi level and hence show metallic nature. It is found that, Al0.75Co0.25N and Al0.75Ni0.25N are ferromagnetic materials with magnetic moments of 4 μB and 3 μB, respectively. The integer magnetic moments and the full spin polarization at the Fermi level make these compounds half‐metallic semiconductors. Furthermore it is also found that the interaction with the N‐2p state splits the 5‐fold degenerate Co/Ni‐3d states into t2g and eg states. The t2g states are located at higher energies than the eg states caused by the tetrahedral symmetry of these compounds. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
In the present work, we mainly study dissociation of the C 2B1, D2A1, and E2B2 states of the SO2+ ion using the complete active‐space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods. We first performed CASPT2 potential energy curve (PEC) calculations for S‐ and O‐loss dissociation from the X, A, B, C, D, and E primarily ionization states and many quartet states. For studying S‐loss predissociation of the C, D, and E states by the quartet states to the first, second, and third S‐loss dissociation limits, the CASSCF minimum energy crossing point (MECP) calculations for the doublet/quartet state pairs were performed, and then the CASPT2 energies and CASSCF spin‐orbit couplings were calculated at the MECPs. Our calculations predict eight S‐loss predissociation processes (via MECPs and transition states) for the C, D, and E states and the energetics for these processes are reported. This study indicates that the C and D states can adiabatically dissociate to the first O‐loss dissociation limit. Our calculations (PEC and MECP) predict a predissociation process for the E state to the first O‐loss limit. Our calculations also predict that the E2B2 state could dissociate to the first S‐ and O‐loss limits via the A2B2E2B2 transition. On the basis of the 13 predicted processes, we discussed the S‐ and O‐loss dissociation mechanisms of the C, D, and E states proposed in the previous experimental studies. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
The ground state and the first few excited states of an MnO69? cluster are calculated in the unrestricted Hartree–Fock model. The state ordering is 5B1 g, 5A1 g, 5B2 g, and 5Eg as can be expected from simpler models. Consistent with the results by the same method for copper complexes, we obtain dd transition energies about one half or less of the experimental energies. The charge transfer spectrum is subject to a large spin polarization in the sense that the lowest charge transfer state (5Eu) has five unpaired spins on Mn.  相似文献   

4.
Potential hydrogen storage ternaries Zr3FeH7 and Zr2FeH5, are studied from ab initio with the purpose of identifying changes in electronic structures and bonding properties. Cohesive energy trends: Ecoh. (ZrH2) > Ecoh. (Zr2FeH5) > Ecoh. (Zr3FeH7) > Ecoh. (hypothetic-FeH) indicate a progressive destabilization of the binary hydride ZrH2 through adjoined Fe so that Zr3FeH7 is found less cohesive than Zr2FeH5. From the energy volume equations of states EOS the volume increase upon hydriding the intermetallics leads to higher bulk moduli B0 explained by the Zr/Fe–H bonding. Fe–H bond in Zr2FeH5 leads to annihilate magnetic polarization on Fe whereas Fe magnetic moment develops in Zr3FeH7 identified as ferromagnetic in the ground state. These differences in magnetic behaviors are due to the weakly ferromagnetic Fe largely affected by lattice environment, as opposed to strongly ferromagnetic Co. Hydrogenation of the binary intermetallics weakens the inter-metal bonding and favors the metal–hydrogen bonds leading to more cohesive hydrides as with respect to the pristine binaries. Charge analyses point to covalent like Fe versus ionic Zr and hydrogen charges ranging from covalent H−0.27 to more ionic H−0.5.  相似文献   

5.
The interconversions between isomers with the same spin multiplicity of neutral B6 and charged B6 ? and B6 + clusters have been investigated at the B3LYP/6-311+G* level of theory, including determination of the minimum energy pathways with transition states connecting the corresponding reactants and products. In dynamic calculations, 26 isomers were optimized, including 11 novel isomers. In order to further refine the energies, single-point B3LYP/6-311+G(3df) calculations were carried out on the corresponding B3LYP/6-311+G* geometries of all isomers of B6, B6 ? and B6 + and the corresponding isomerization transition states. The stability of each isomer of B6 (singlet and triplet states), B6 ? (doublet state) and B6 + (doublet state) was analyzed from both thermodynamic and dynamic viewpoints.  相似文献   

6.
A series of spinel compounds with composition CuFe0.5(Sn(1−x)Tix)1.5S4 (0≤x≤1) is analysed by X-ray diffraction, measurements of magnetic susceptibilities and 57Fe Mössbauer spectroscopy. All samples show a temperature-dependent equilibrium between an electronic low spin 3d(t2g)6(eg)0 and a high spin 3d(t2g)4(eg)2 state of the Fe(II) ions. The spin crossover is of the continuous type and extends over several hundred degrees in all samples. The Sn/Ti ratio influences the thermal equilibrium between the two spin states. Substitution of Sn(IV) by the smaller Ti(IV) ions leads to a more compact crystal lattice, which, in contrast to many metal-organic Fe(II) complexes, does not stabilise the low spin state, but increases the residual high spin fraction for T→0 K. The role played by antiferromagnetic spin coupling in the stabilisation of the high spin state is discussed. The results are compared with model calculations treating the effect of magnetic interactions on spin state equilibria.  相似文献   

7.
A first principle investigation has been carried out for intermediate states of the catalytic cycle of a cytochrome P450. To elucidate the whole catalytic cycle of P450, the electronic and geometrical structures are investigated not only at each ground state but also at low‐lying energy levels. Using the natural orbital analysis, the nature of chemical bonds and magnetic interactions are investigated. The ground state of the Compound 1 ( cpd1 ) is calculated to be a doublet state, which is generated by the antiferromagnetic coupling between a triplet Fe(IV)?O moiety and a doublet ligand radical. We found that an excited doublet state of the cpd1 is composed of a singlet Fe(IV)?O and a doublet ligand radical. This excited state lies 20.8 kcal mol?1 above the ground spin state, which is a non‐negligible energy level as compared with the activation energy barrier of ΔE# = 26.6 kcal mol?1. The reaction path of the ground state of cpd1 is investigated on the basis of the model reaction: 3O(3p) + CH4. The computational results suggest that the reactions of P450 at the ground and excited states proceed through abstraction (3O‐model) and insertion (1O‐model) mechanisms, respectively. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

8.
57Fe Mössbauer spectra of [FeL4] (ClO4)2 where L = 1,8-naphthyridine have been measured at 4.2°K in external magnetic fields up to 55 kG parallel to the direction of the γ-rays. The spectra have been fitted in the spin hamiltonian approximation assuming an orbital singlet ground state of the 5D multiplet of Fe2+. The fit of the spectra is not unique, yet the possible spin hamiltonian parameter sets found lead to a spin doublet ground state split by less than 1 cm?1. The transition probabilities for spin-lattice relaxation have been calculated for those ground states. Orbach processes via excited spin hamiltonian states cannot be neglected. The results explain the fluctuations observed in the spectra in low external magnetic fields (10 kG).The spin hamiltonian parameters provide information on the orbital energy levels. Therefrom the reduction of the quadrupole splitting by spin—orbit coupling results to be small thus explaining the extremely large quadrupole splitting of 4.54 mm/sec.  相似文献   

9.
Based on density functional theory electronic and magnetic structure characterizations an unusual onset of spin polarization of p states is demonstrated leading to a stable ferromagnetic order within a carbon layered honeycomb-like compound. Specifically structural relaxation of formerly studied C2N in 3D network and devised here in 2D layered AlB2-type derived structure shows that the resulting ordered compound maintains the hexagonal crystal symmetry with an exceptionally large c/a ratio leading to strong localization of N states along c and letting magnetization develop within N-pz orbitals with 1.1 μB per formula unit. Anisotropic antibonding interactions between C and N layers allow interpreting the results. The compound is energetically characterized in ferromagnetic ground state versus less stable anti-ferromagnetic order.  相似文献   

10.
The excited electronic states of 2, 2-dimethylisoindene ( 1 ) have been studied by electron-energy-loss spectroscopy. Its vertical gas-phase triplet (13B2), and singlet (11B2) excitation energies are 1.61 and 3.19 eV, respectively. The excited states are thus lowered by 0.49 eV and 1.21 eV, respectively, when compared to the corresponding states of (all-E)-octatetraene, which serves as a reference compound. These shifts are partially reproduced by ZINDO calculations. The spectra give no evidence for a 21Ag state below the 11B2 state, but this lack of observation does not exclude its existence. The lowest triplet state T1( 1 ) was further characterized by flash photolysis. T1( 1 ) was observed as a transient intermediate, λ ≤ 350 nm, with a lifetime of 8 m?s in degassed hexane. The adiabatic excitation energy of T1( 1 ) was bracketed to the range of 1.1 ± 0.1 eV by energy-transfer experiments. Relationships between the energies of the lowest excited singlet and triplet states of 1 and the lowest excited doublet state of its radical cation ${1}^{+\kern0pt {.}}$ – essentially a non-Koopmans' state – are discussed.  相似文献   

11.
《Polyhedron》2003,22(14-17):1865-1870
The synthesis, X-ray structure, and magnetic properties of a trinuclear iron complex with the formulation [Fe3O2Cl2(4,7-Me-phen)6](BF4)3 (complex 1) are reported. DC magnetic susceptibility measurements show the Fe atoms are antiferromagnetically coupled, yielding an S=5/2 ground state. An investigation as to whether complex 1 exhibits the properties associated with single-molecule magnetism was undertaken. Detailed high frequency EPR experiments were carried out to determine the spin Hamiltonian parameters associated with the S=5/2 spin ground state. Analysis of the temperature dependence of the transitions seen with the magnetic field oriented along the easy axis (z axis) of the Fe3 complex confirm that the molecule has a positive D value. A fit of the frequency dependence of the resonances afforded the following spin Hamiltonian parameters: S=5/2, gz=1.95, gx=gy=2.00, D=0.844 cm−1, E=±0.117 cm−1, and B4 0=−2.7×10−4 cm−1. Low temperature magnetization versus magnetic field data confirm that complex 1 has no barrier towards magnetization reversal. Thus, it is concluded that, due to the positive D-value, complex 1 is not a single-molecule magnet.  相似文献   

12.
An analysis of the electronic correlation structures by means of the charge and spin correlation functions is carried out for full CI wave functions of four, five, and six membered conjugated π systems described by the Pariser–Parr–Pople Hamiltonian. The low-lying states of these systems are classified as covalent (CV ) and ionic (IN ) states depending on whether the probability of finding two electrons simultaneously at the same position is small or large. It is found that many of excited CV states, the typical ones of which are the 21Ag state of linear π systems, have stronger CV character than the ground CV state, and their spin coupling structures are different from each other as well as from that of the ground CV state. The spin coupling structure in the ground CV state has an “antiferromagnetic” spin arrangement in favor of antiparallel coupling between nearest neighbor spins while in excited CV states the extent of the antiparallel spin coupling between nearest neighbor sites is decreased. IN states, which are less common for low-lying states than CV ones, are also found to have characteristic modulations in the charge correlation. In particular, the charge correlations in the lowest singlet IN states, 11Bu of linear π systems, 11B2g of cyclobutadiene and 11B1U of benzene, are alternating.  相似文献   

13.
洪家岁  王娴  谭凯  林梦海  张乾二 《化学学报》2006,64(10):1063-1067
用密度泛函方法对过渡金属Mn5, Mn6的各种可能构型, 在PW91/ZoraTZ2P水平上进行了理论研究. 计算结果表明: 构型是自旋变化、磁性的敏感因素, Mn5最稳定构型为弱铁磁性的三角双锥体(磁矩为3, D3h). Mn6的最稳定构型为铁磁性的畸变八面体(磁矩为16, C4v). 各种异构体虽然多重度不同, 但每个原子的自旋极化度均在3以上. 构型稳定与否取决于原子间的交换耦合作用, 而原子间的这种作用又与自旋极化度的方向、大小息息相关.  相似文献   

14.
A heteroleptic iron(II) complex [Fe(dcpp)(ddpd)]2+ with a strongly electron‐withdrawing ligand (dcpp, 2,6‐bis(2‐carboxypyridyl)pyridine) and a strongly electron‐donating tridentate tripyridine ligand (ddpd, N,N′‐dimethyl‐N,N′‐dipyridine‐2‐yl‐pyridine‐2,6‐diamine) is reported. Both ligands form six‐membered chelate rings with the iron center, inducing a strong ligand field. This results in a high‐energy, high‐spin state (5T2, (t2g)4(eg*)2) and a low‐spin ground state (1A1, (t2g)6(eg*)0). The intermediate triplet spin state (3T1, (t2g)5(eg*)1) is suggested to be between these states on the basis of the rapid dynamics after photoexcitation. The low‐energy π* orbitals of dcpp allow low‐energy MLCT absorption plus additional low‐energy LL′CT absorptions from ddpd to dcpp. The directional charge‐transfer character is probed by electrochemical and optical analyses, Mößbauer spectroscopy, and EPR spectroscopy of the adjacent redox states [Fe(dcpp)(ddpd)]3+ and [Fe(dcpp)(ddpd)]+, augmented by density functional calculations. The combined effect of push–pull substitution and the strong ligand field paves the way for long‐lived charge‐transfer states in iron(II) complexes.  相似文献   

15.
The reaction of fac‐[MIIIF3(Me3tacn)]?x H2O with Gd(NO3)3?5H2O affords a series of fluoride‐bridged, trigonal bipyramidal {GdIII3MIII2} (M=Cr ( 1 ), Fe ( 2 ), Ga ( 3 )) complexes without signs of concomitant GdF3 formation, thereby demonstrating the applicability even of labile fluoride‐complexes as precursors for 3d–4f systems. Molecular geometry enforces weak exchange interactions, which is rationalized computationally. This, in conjunction with a lightweight ligand sphere, gives rise to large magnetic entropy changes of 38.3 J kg?1 K?1 ( 1 ) and 33.1 J kg?1 K?1 ( 2 ) for the field change 7 T→0 T. Interestingly, the entropy change, and the magnetocaloric effect, are smaller in 2 than in 1 despite the larger spin ground state of the former secured by intramolecular Fe–Gd ferromagnetic interactions. This observation underlines the necessity of controlling not only the ground state but also close‐lying excited states for successful design of molecular refrigerants.  相似文献   

16.
Phonon spectra of CaB6 and RB6 (R=Yb, Ce, and Pr) have been investigated by Raman scattering. We found clear spectral difference between divalent cation hexaboride and trivalent one. Eg mode shows the doublet spectra for only the divalent crystals of CaB6 and YbB6. The doublet spectra are understood by the two-dimensional charge distribution on B6 without lattice distortion. In addition, the scattered intensities of the phonons change at around the ferromagnetic Curie temperature for YbB6 and at T?600 K for CaB6. These are the characteristic temperatures due to the change of the electronic system.  相似文献   

17.
X‐ray magnetic circular dichroism spectroscopy has been used to characterize the electronic structure and magnetic moment of Cr2+. Our results indicate that the removal of a single electron from the 4sσg bonding orbital of Cr2 drastically changes the preferred coupling of the 3d electronic spins. While the neutral molecule has a zero‐spin ground state with a very short bond length, the molecular cation exhibits a ferromagnetically coupled ground state with the highest possible spin of S=11/2, and almost twice the bond length of the neutral molecule. This spin configuration can be interpreted as a result of indirect exchange coupling between the 3d electrons of the two atoms that is mediated by the single 4s electron through a strong intraatomic 3d‐4s exchange interaction. Our finding allows an estimate of the relative energies of two states that are often discussed as ground‐state candidates, the ferromagnetically coupled 12Σ and the low‐spin 2Σ state.  相似文献   

18.
The generation of iron(V) nitride complexes, which are targets of biomimetic chemistry, is reported. Temperature‐dependent ion spectroscopy shows that this reaction is governed by the spin‐state population of their iron(III) azide precursors and can be tuned by temperature. The complex [(MePy2TACN)Fe(N3)]2+ (MePy2TACN=N ‐methyl‐N ,N ‐bis(2‐picolyl)‐1,4,7‐triazacyclononane) exists as a mixture of sextet and doublet spin states at 300 K, whereas only the doublet state is populated at 3 K. Photofragmentation of the sextet state complex leads to the reduction of the iron center. The doublet state complex photodissociates to the desired iron(V) nitride complex. To generalize these findings, we show results for complexes with cyclam‐based ligands.  相似文献   

19.
The UV (λ>305 nm) photolysis of triazide 3 in 2‐methyl‐tetrahydrofuran glass at 7 K selectively produces triplet mononitrene 4 (g=2.003, DT=0.92 cm?1, ET=0 cm?1), quintet dinitrene 6 (g=2.003, DQ=0.204 cm?1, EQ=0.035 cm?1), and septet trinitrene 8 (g=2.003, DS=?0.0904 cm?1, ES=?0.0102 cm?1). After 45 min of irradiation, the major products are dinitrene 6 and trinitrene 8 in a ratio of ~1:2, respectively. These nitrenes are formed as mixtures of rotational isomers each of which has slightly different magnetic parameters D and E. The best agreement between the line‐shape spectral simulations and the experimental electron paramagnetic resonance (EPR) spectrum is obtained with the line‐broadening parameters Γ(EQ)=180 MHz for dinitrene 6 and Γ(ES)=330 MHz for trinitrene 8 . According to these line‐broadening parameters, the variations of the angles Θ in rotational isomers of 6 and 8 are expected to be about ±1 and ±3°, respectively. Theoretical estimations of the magnetic parameters obtained from PBE/DZ(COSMO)//UB3LYP/6‐311+G(d,p) calculations overestimate the E and D values by 1 and 8 %, respectively. Despite the large distances between the nitrene units and the extended π systems, the zero field splitting (zfs) parameters D are found to be close to those in quintet dinitrenes and septet trinitrenes, where the nitrene centers are attached to the same aryl ring. The large D values of branched septet nitrenes are due to strong negative one‐center spin–spin interactions in combination with weak positive two‐center spin–spin interactions, as predicted by theoretical considerations.  相似文献   

20.
Reaction of iron powder with 1,3,4,7-tetramethylisoindole at 350° affords the square planar complex octamethyl-tetrabenzporphyriniron(II), whose magnetic moment indicates a spin quintet ground state. Mössbauer measurements at 4.2°K in an applied magnetic field of 50 kG show that the electric field gradient at iron is positive and axially symmetric, consistent with a 5B2g ground term. The bistetrahydrofuran adduct is also high spin, whereas the bispyridine adduct is diamagnetic with 1A1g ground state. Comparisons are made with data for the related tetraphenylporphiniron(II) and phthalocyanineiron(II) derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号