首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The structures of two distinct polymorphic forms of N‐(2,6‐difluorophenyl)formamide, C7H5F2NO, have been studied using single crystals obtained under different crystallizing conditions. The two forms crystallize in different space groups, viz. form (Ia) in the orthorhombic Pbca and form (Ib) in the monoclinic P21 space group. Each polymorph crystallizes with one complete molecule in the asymmetric unit and they have a similar molecular geometry, showing a trans conformation with the formamide group being out of the plane of the aromatic ring. The packing arrangements of the two polymorphs are quite different, with form (Ia) having molecules that are stacked in an alternating arrangement, linked into chains of N—H...O hydrogen bonds along the crystallographic a direction, while form (Ib) has its N—H...O hydrogen‐bonded molecules stacked in a linear fashion. A theoretical study of the two structures allows information to be gained regarding other contributing interactions, such as π–π and weak C—H...F, in their crystal structures.  相似文献   

2.
Two polymorphic forms of the title compound, C24H20Cl2N4, were obtained and characterized using X‐ray crystal structure analysis. Colourless crystals of polymorph (Ia) were obtained from the oily mother residue. Recrystallization of polymorph (Ia) from an acetone–methanol mixture resulted in pale‐yellow crystals of polymorph (Ib). The major feature distinguishing the two polymorphic forms is their inter­action modes, and hence their packing arrangements. In the crystal structure of polymorph (Ia), there are N—H⋯N hydrogen bonds and also aromatic π–π stacking inter­actions between mol­ecules. The mol­ecules of polymorph (Ib) are linked by N—H⋯Cl hydrogen bonds only.  相似文献   

3.
Two polymorphs of the title compound, C16H16O3, have been obtained from the same solution. One polymorph, (Im), crystallizes in the monoclinic space group P21, while the other, (Io), crystallizes in the orthorhombic space group P212121. The cell constants of the two polymorphs are surprisingly similar. Whereas the a and b axes are equal in the two structures, the c axis in (Io) is twice as long as that in (Im). The monoclinic angle β is 95.084 (9)° compared with 90° in the orthorhombic crystal system. The cell volume of (Im) is almost exactly half of the cell volume of (Io). The packing motifs are also very similar in the two structures. However, whereas the molecules in (Im) are related by a twofold screw axis just in the direction of the b axis, in (Io) there are twofold screw axes along all three directions of the unit cell.  相似文献   

4.
A new polymorph, (Ib), of the title compound, C8H8Br2, crystallizes in the space group P21/n, the same as the known polymorph (Ia) but with Z = 2 (imposed inversion symmetry) rather than Z = 4. The molecular structures are closely similar because the molecule has no degrees of torsional freedom except for methyl groups, but the packing arrangements are completely different. Polymorph (Ia) is characterized by linked trapezia of Br...Br interactions, whereas polymorph (Ib) features H...Br and Br...π interactions.  相似文献   

5.
The synthesis and the crystal structures of the complexes [Cu(LI)2](ClO4) ( 1 ) and [Cu(LI)(CH3CN)2(ClO4)2] ( 2 ) are reported. 1 crystallizes in the monoclinic space group C2/c with the unit cell dimensions a = 13.169(4), b = 12.289(3), c = 14.732(3) Å, β = 109.03(2)° and Z = 4. Copper(I) is coordinated to four N atoms of the two 1,10‐Phenanthroline‐5,6‐dione (LI) ligands with a two‐fold axis passing between the ligands. The copper(II) compound 2 crystallizes in the orthorhombic space group Pbn21 with unit cell dimensions of a = 7.498(5), b = 23.492(7), c = 12.363(4) Å and Z = 4. Copper(II) coordination can be described as a distorted octahedron with the N donor atoms of one LI ligand and of two molecules of CH3CN occupying the equatorial positions completed by two oxygen atoms of the two perchlorate molecules in the axial positions.  相似文献   

6.
2,5‐[(Diphenylphosphanyl)methyl]‐1,1,2,4,4,5‐hexaphenyl‐1,4‐diphospha‐2,5‐diboracyclohexane shows polymorphism as two tetrahydrofuran (THF) disolvates [C64H58B2P4·2C4H8O, (Ia) and (Ib)] and pseudo‐polymorphism as its toluene monosolvate [C64H58B2P4·C7H8, (Ic)]. In each of polymorphs (Ia) and (Ib), the diphosphadiboracyclohexane molecule is located on a centre of inversion. The THF molecule of (Ib) is disordered over two sites, with a site‐occupation factor of 0.612 (8) for the major‐occupied site. Both structures crystallize in the same space group (P21/n), but they display a different crystal packing. For pseudo‐polymorph (Ic), although the space group is P21/c, which is just a different setting of the P21/n space group of (Ia) and (Ib), the crystal packing is completely different. Although the crystal packing in these three structures is significantly different, their molecular conformations are surprisingly the same.  相似文献   

7.
Low‐temperature X‐ray diffraction experiments were employed to investigate the crystal structures of an orthorhombic polymorph of the intramolecular cyclization product of perindopril, a popular angiotensive‐converting enzyme (ACE) inhibitor, namely ethyl (2S)‐2‐[(3S,5aS,9aS,10aS)‐3‐methyl‐1,4‐dioxo‐5a,6,7,8,9,9a,10,10a‐octahydro‐3H‐pyrazino[1,2‐a]indol‐2‐yl]pentanoate, C19H30N2O4, (Io), and its tetragonal equivalent, (It), which was previously reported at ambient temperature [Bojarska et al. (2013). J. Chil. Chem. Soc. 58 , 1415–1417]. Polymorph (Io) crystallizes in the orthorhombic space group P212121 with two molecules in the asymmetric unit, while tetragonal form (It) crystallizes in the space group P41212 with one molecule in the asymmetric unit. The geometric parameters of (Io) are very similar to those of (It). The six‐membered rings in both polymorphs adopt a slightly deformed chair conformation and the piperazinedione rings are in a boat conformation. However, the proline rings adopt an envelope conformation in (Io), while in (It) the ring exists in a slightly deformed half‐chair conformation. The most significant difference between the two structures is the orientation of the ethyl pentanoate chain. Molecules associate in pairs in a head‐to‐tail manner forming infinite columns. In (Io), molecules are related by a twofold screw axis forming identical columns, while in (It), molecules in successive neighbouring columns are related by alternating twofold screw axes and fourfold screw axes. In both cases, the crystal packing is stabilized by weak intermolecular C—H...O interactions only.  相似文献   

8.
Crystallization (from ethyl acetate solution) of 2‐(4‐chlorophenyl)‐4‐methylchromenium perchlorate, C16H12ClO+·;ClO4, (I), yields two monoclinic polymorphs with the space groups P21/n [polymorph (Ia)] and P21/c [polymorph (Ib)]; in both cases, Z = 4. Cations and anions, disordered in polymorph (Ib), form ion pairs in both polymorphs as a result of Cl—O...π interactions. Related by a centre of symmetry, neighbouring ion pairs in polymorph (Ia) are linked viaπ–π interactions between cationic fragments, and the resulting dimers are linked through a network of C—H...O(perchlorate) interactions between adjacent cations and anions. The ion pairs in polymorph (Ib), arranged in pairs of columns along the a axis, are linked through a network of C—H...O(perchlorate), C—Cl...π, π–π and C—Cl...O(perchlorate) interactions. The aromatic skeletons in polymorph (Ia) are parallel in the cationic fragments involved in dimers, but nonparallel in adjacent ion pairs not constituting dimers. In polymorph (Ib), these skeletons are parallel in pairs of columns, but nonparallel in adjacent pairs of columns; this is visible as a herring‐bone pattern. Differences in the crystal structures of the polymorphs are most probably the cause of their different colours.  相似文献   

9.
The title salt, C6H6NO2+·ClO4·C6H5NO2, was crystallized from an aqueous solution of equimolar quantities of perchloric acid and pyridine‐2‐carboxylic acid. Differential scanning calorimetry (DSC) measurements show that the compound undergoes a reversible phase transition at about 261.7 K, with a wide heat hysteresis of 21.9 K. The lower‐temperature polymorph (denoted LT; T = 223 K) crystallizes in the space group C2/c, while the higher‐temperature polymorph (denoted RT; T = 296 K) crystallizes in the space group P2/c. The relationship between these two phases can be described as: 2aRT = aLT; 2bRT = bLT; cRT = cLT. The crystal structure contains an infinite zigzag hydrogen‐bonded chain network of 2‐carboxypyridinium cations. The most distinct difference between the higher (RT) and lower (LT) temperature phases is the change in dihedral angle between the planes of the carboxylic acid group and the pyridinium ring, which leads to the formation of different ten‐membered hydrogen‐bonded rings. In the RT phase, both the perchlorate anions and the hydrogen‐bonded H atom within the carboxylic acid group are disordered. The disordered H atom is located on a twofold rotation axis. In the LT phase, the asymmetric unit is composed of two 2‐carboxypyridinium cations, half an ordered perchlorate anion with ideal tetrahedral geometry and a disordered perchlorate anion. The phase transition is attributable to the order–disorder transition of half of the perchlorate anions.  相似文献   

10.
Due to its donor–acceptor–donor site, the antimalarial drug pyrimethamine [systematic name: 5‐(4‐chlorophenyl)‐6‐ethylpyrimidine‐2,4‐diamine] is a potential component of a supramolecular synthon. During a cocrystallization screen, one new polymorph of solvent‐free pyrimethamine, C12H13ClN4, (I), and two pseudopolymorphs, pyrimethamine dimethyl sulfoxide monosolvate, C12H13ClN4·C2H6OS, (Ia), and pyrimethamine N‐methylpyrrolidin‐2‐one monosolvate, C12H13ClN4·C5H9NO, (Ib), were obtained. In (I), (Ia), (Ib) and the previously reported polymorph, the pyrimethamine molecules exhibit similar conformations and form R22(8) dimers stabilized by a pair of N—H...N hydrogen bonds. However, the packing arrangements are completely different. In (I), the dimers are connected by two additional N—H...N hydrogen bonds to form ribbons and further connected into a two‐dimensional network parallel to (100), while layers containing N—H...Cl hydrogen‐bonded pyrimethamine ribbons are observed in the packing of the known polymorph. In the two pseudopolymorphs, two pyrimethamine molecules are linked to form R22(8) dimers and the solvent molecules are connected to the dimers by R23(8) interactions involving two N—H...O hydrogen bonds. These arrangements are connected to form zigzag chains by N—H...Cl interactions in (Ia) and to form ribbons by N—H...N interactions in (Ib). Unexpectedly, a reaction between pyrimethamine and N‐methylpyrrolidin‐2‐one occurred during another cocrystallization experiment from a solvent mixture of N‐methylpyrrolidin‐2‐one and dimethyl sulfoxide, yielding solvent‐free 5,5′‐{[5‐(4‐chlorophenyl)‐6‐ethylpyrimidine‐2,4‐diyl]bis(azanediyl)}bis(1‐methylpyrrolidin‐2‐one), C22H27ClN6O2, (II). In the packing of (II), the pyrimethamine derivatives are N—H...O hydrogen bonded to form ribbons. A database study was carried out to compare the molecular conformations and hydrogen‐bonding interactions of pyrimethamine.  相似文献   

11.
This study characterizes a new polymorph of the title compound, [CuCl(C18H15P)3], and analyses the influence of the extensive network of weak hydrogen‐bonding interactions in the generation of this different crystal structure. The compound crystallizes in the centrosymmetric space group C2/c with two crystallographically independent molecules per asymmetric unit, in contrast with the previously determined polymorph which crystallizes in the noncentrosymmetric space group P3 with three crystallographically independent molecules in the asymmetric unit, each with crystallographically imposed C3 symmetry [Gill, Mayerle, Welcker, Lewis, Ucko, Barton, Stowens & Lippard (1976). Inorg. Chem. 15 , 1155–1168]. The geometries of the two molecules of the title compound are very similar, with each having an approximately tetrahedral coordination around the central Cu atom and approximate Cs molecular symmetry. The molecules pack in chains parallel to the crystallographic b axis, connected by C—H...Cl and C—H...π(phenyl) hydrogen bonds.  相似文献   

12.
The crystal structure of a polymorph of 4‐aminobenzoic acid (PABA), C7H7NO2, at 100 K is noncentrosymmetric, as opposed to centrosymmetric in the structures of the other known polymorphs. The two crystallographically independent PABA molecules form pseudocentrosymmetric O—H...O hydrogen‐bonded dimers that are further linked by N—H...O hydrogen bonds into a three‐dimensional network. The benzene rings stack in the b direction. The CO2 moieties are bent out slightly from the benzene ring plane.  相似文献   

13.
Polymorph (Ia) of eldoral [5‐ethyl‐5‐(piperidin‐1‐yl)barbituric acid or 5‐ethyl‐5‐(piperidin‐1‐yl)‐1,3‐diazinane‐2,4,6‐trione], C11H17N3O3, displays a hydrogen‐bonded layer structure parallel to (100). The piperidine N atom and the barbiturate carbonyl group in the 2‐position are utilized in N—H...N and N—H...O=C hydrogen bonds, respectively. The structure of polymorph (Ib) contains pseudosymmetry elements. The two independent molecules of (Ib) are connected via N—H...O=C(4/6‐position) and N—H...N(piperidine) hydrogen bonds to give a chain structure in the [100] direction. The hydrogen‐bonded layers, parallel to (010), formed in the salt diethylammonium 5‐ethyl‐5‐(piperidin‐1‐yl)barbiturate [or diethylammonium 5‐ethyl‐2,4,6‐trioxo‐5‐(piperidin‐1‐yl)‐1,3‐diazinan‐1‐ide], C4H12N+·C11H16N3O3, (II), closely resemble the corresponding hydrogen‐bonded structure in polymorph (Ia). Like many other 5,5‐disubstituted derivatives of barbituric acid, polymorphs (Ia) and (Ib) contain the R22(8) N—H...O=C hydrogen‐bond motif. However, the overall hydrogen‐bonded chain and layer structures of (Ia) and (Ib) are unique because of the involvement of the hydrogen‐bond acceptor function in the piperidine group.  相似文献   

14.
BiSeI crystals obtained by a chemical‐transport reaction are orthorhombic (space group Pnma) with a = 8.6967 (17) Å, b = 4.2205 (8) Å and c = 10.574 (2) Å. It could be confimed that BiSeI crystallizes in the centrosymmetric SbSI structure type.  相似文献   

15.
The structures of 1H‐phenanthro[9,10‐d]imidazole, C15H10N2, (I), and 3,6‐dibromo‐1H‐phenanthro[9,10‐d]imidazole hemihydrate, C15H8Br2N2·0.5H2O, (II), contain hydrogen‐bonded polymeric chains linked by columns of π–π stacked essentially planar phenanthroimidazole monomers. In the structure of (I), the asymmetric unit consists of two independent molecules, denoted (Ia) and (Ib), of 1H‐phenanthro[9,10‐d]imidazole. Alternating molecules of (Ia) and (Ib), canted by 79.07 (3)°, form hydrogen‐bonded zigzag polymer chains along the a‐cell direction. The chains are linked by π–π stacking of molecules of (Ia) and (Ib) along the b‐cell direction. In the structure of (II), the asymmetric unit consists of two independent molecules of 3,6‐dibromo‐1H‐phenanthro[9,10‐d]imidazole, denoted (IIa) and (IIb), along with a molecule of water. Alternating molecules of (IIa), (IIb) and water form hydrogen‐bonded polymer chains along the [110] direction. The donor–acceptor distances in these N(imine)...H—O(water)...H—N(amine) hydrogen bonds are the shortest thus far reported for imidazole amine and imine hydrogen‐bond interactions with water. Centrosymmetrically related molecules of (IIa) and (IIb) alternate in columns along the a‐cell direction and are canted by 48.27 (3)°. The present study provides the first examples of structurally characterized 1H‐phenanthroimidazoles.  相似文献   

16.
Two polymorphs of 2,5‐diphenyl‐1,3,4‐selenadiazole, C14H10N2Se, denoted (Ia) and (Ib), and a new polymorph of 2,5‐bis(thiophen‐2‐yl)‐1,3,4‐selenadiazole, C10H6N2S2Se, (IIb), form on crystallization of the compounds, prepared using Woollins' reagent (2,4‐diphenyl‐1,3‐diselenadiphosphetane 2,4‐diselenide). These compounds, along with 2‐(4‐chlorophenyl)‐5‐phenyl‐1,3,4‐selenadiazole, C14H9ClN2Se, (III), and 2‐(furan‐2‐yl)‐5‐(p‐tolyl)‐1,3,4‐selenadiazole, C13H10N2OSe, (IV), show similar intermolecular interactions, with π–π stacking, C—H...π interactions and weak hydrogen bonds typically giving rise to molecular chains. However, the combination of interactions differs in each case, giving rise to different packing arrangements. In polymorph (Ib), the molecule lies across a crystallographic twofold rotation axis, and (IV) has two independent molecules in the asymmetric unit.  相似文献   

17.
Polymorph (Ia) (m.p. 474 K) of the title compound, C12H18N2O3, displays an N—H...O=C hydrogen‐bonded layer structure which contains R66(28) rings connecting six molecules, as well as R22(8) rings linking two molecules. The 3‐connected hydrogen‐bonded net resulting from these interactions has the hcb topology. Form (Ib) (m.p. 471 K) displays N—H...O=C hydrogen‐bonded looped chains in which neighbouring molecules are linked to one another by two different R22(8) rings. Polymorph (Ia) is isostructural with the previously reported form II of 5‐(2‐bromoallyl)‐5‐isopropylbarbituric acid (noctal) and polymorph (Ib) is isostructural with the known crystal structures of four other barbiturates.  相似文献   

18.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

19.
Two polymorphs of the title compound, C5H5NO, (I), have been obtained from ethanol. One polymorph crystallizes in the monoclinic space group C2/c [henceforth (I)‐M], while the other crystallizes in the orthorhombic space group Pbca [henceforth (I)‐O]. In the two forms, the lattice parameters, cell volume and packing motifs are very similar. There are also two independent molecules of 4‐pyridone in each asymmetric unit. The molecules are linked by N—H...O hydrogen bonds into one‐dimensional zigzag chains extending along the b axis in the (I)‐M polymorph and along the a axis in the (I)‐O polymorph, with the graph set C22(12). The structures are stabilized by weak C—H...O hydrogen bonds linking adjacent chains, thus forming a ring with the graph set R65(28). The significance of this study lies in the analysis of the hydrogen‐bond interactions occurring in these structures. Analyses of the crystal structures of the two polymorphs of 4‐pyridone are helpful in elucidating the mechanism of the generation of spectroscopic effects observed in the IR spectra of these polymorphs in the frequency range of the N—H stretching vibration band.  相似文献   

20.
The crystal structures of three products of the reaction of 2‐phenylphenol and BCl3 have been determined. The structures show intriguing packing patterns and an interesting case of pseudosymmetry. In addition, one of the two polymorphs has a primitive monoclinic crystal system, but it is twinned and emulates an orthorhombic C‐centred structure. Tris(biphenyl‐2‐yl) borate, C36H27BO3, ( III ), crystallizes with only one molecule in the asymmetric unit. The dihedral angles between the planes of the aromatic rings in the biphenyl moieties are 50.47 (13), 44.95 (13) and 42.60 (13)°. The boron centre is in a trigonal planar coordination with two of the biphenyl residues on one side of the BO3 plane and the remaining biphenyl residue on the other side. One polymorph of 10‐oxa‐9‐boraphenanthren‐9‐ol, C12H9BO2, ( V a ), crystallizes with two almost identical molecules (r.m.s. deviation of all non‐H atoms = 0.039 Å) in the asymmetric unit. All non‐H atoms lie in a common plane (r.m.s. deviation = 0.015 Å for both molecules in the asymmetric unit). The two molecules in the asymmetric unit are connected into dimers via O—H...O hydrogen bonds. A second polymorph of 10‐oxa‐9‐boraphenanthren‐9‐ol, ( V b ), crystallizes as a pseudo‐merohedral twin with two almost identical molecules (r.m.s. deviation of all non‐H atoms = 0.035 Å) in the asymmetric unit. All non‐H atoms lie in a common plane (r.m.s. deviation = 0.012 Å for molecule 1 and 0.014 Å for molecule A). Each of the two molecules in the asymmetric unit is connected into a centrosymmetric dimer via O—H...O hydrogen bonds. The main difference between the two polymorphic structures is that in ( V a ) the two molecules in the asymmetric unit are hydrogen bonded to each other, whereas in ( V b ), each molecule in the asymmetric unit forms a hydrogen‐bonded dimer with its centrosymmetric equivalent. 9‐[(Biphenyl‐2‐yl)oxy]‐10‐oxa‐9‐boraphenanthrene, C24H17BO2, ( VI ), crystallizes with four molecules in the asymmetric unit. The main differences between them are the dihedral angles between the ring planes. Apart from the biphenyl moiety, all non‐H atoms lie in a common plane (r.m.s. deviations = 0.026, 0.0231, 0.019 and 0.033 Å for molecules 1, A, B and C, respectively). This structure shows pseudosymmetry; molecules 1 and A, as well as molecules B and C, are related by a pseudo‐translation of about in the direction of the b axis. Molecules 1 and B, as well as molecules A and C, are related by a pseudo‐inversion centre at ,,. Neither between molecules 1 and C nor between molecules A and B can pseudosymmetry be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号