首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Crystallization of 2‐amino‐4‐chloro‐6‐morpholino­pyrimidine, C8H11ClN4O, (I), yields two polymorphs, both with space group P21/c, having Z′ = 1 (from diethyl ether solution) and Z′ = 2 (from di­chloro­methane solution), denoted (Ia) and (Ib), respectively. In polymorph (Ia), the mol­ecules are linked by an N—H⋯O and an N—H⋯N hydrogen bond into sheets built from alternating R(8) and R(40) rings. In polymorph (Ib), one mol­ecule acts as a triple acceptor of hydrogen bonds and the other acts as a single acceptor; one N—H⋯O and three N—H⋯N hydrogen bonds link the mol­ecules in a complex chain containing two types of R(8) and one type of R(18) ring. 2‐Amino‐4‐chloro‐6‐piperidino­pyrimidine, C9H13ClN4, (II), which is isomorphous with polymorph (Ib), also has Z′ = 2 in P21/c, and the mol­ecules are linked by three N—­H⋯N hydrogen bonds into a centrosymmetric four‐mol­ecule aggregate containing three R(8) rings.  相似文献   

2.
Two new polymorph forms, (Ia) and (Ib), of the title compound, C14H17N3S, and its solvate with aceto­nitrile, C14H17N3S·0.25C2H3N, (Ic), have been investigated. Crystals of the two polymorphs were grown from different solvents, viz. ethanol and N,N‐di­methyl­form­amide, respectively. The polymorphs have different orientations of the thio­amide group relative to the CN substituent, with s‐cis and s‐trans geometry of the C=C—C=S diene fragment, respectively. Compound (Ic) contains two independent mol­ecules, A and B, with s‐cis geometry, and the solvate mol­ecule lies on a twofold axis. The core of each mol­ecule is slightly non‐planar; the dihedral angles between the conjugated C=C—CN linkage and the phenyl ring, and between this linkage and the thio­amide group are 13.4 (2) and 12.0 (2)° in (Ia), 14.0 (2) and 18.2 (2)° in (Ib), 2.3 (3) and 12.7 (4)° in molecule A of (Ic), and 23.2 (3) and 8.1 (4)° in molecule B of (Ic). As a result of strong conjugation between donor and acceptor parts, the substituted phenyl rings have noticeable quinoid character. In (Ib), there exists a very strong intramolecular steric interaction (H⋯H = 1.95 Å) between the bridging and thio­amide parts of the mol­ecule, which makes such a form less stable. In the crystal structure of (Ia), intermolecular N—H⋯N and N—H⋯S hydrogen bonds link mol­ecules into infinite tapes along the [10] direction. In (Ib), such intermolecular hydrogen bonds link mol­ecules into infinite (101) planes. In (Ic), intermolecular N—H⋯N hydrogen bonds link mol­ecules A and B into dimers, which are connected via N—H⋯S hydrogen bonds and form infinite chains along the c direction.  相似文献   

3.
The title compound, C14H12O4, forms crystals which appear monoclinic but are actually twinned triclinic. The asymmetric unit consists of two similar mol­ecules, which differ only in the conformation of the 3‐oxobutyl side chain. The mol­ecular conformation is characterized by an intra­molecular O—H⋯O hydrogen bond between the hydroxy group and the adjacent carbonyl O atom. The crystal structure is stabilized by O—H⋯O hydrogen bonds connecting the mol­ecules into zigzag chains running along the b axis.  相似文献   

4.
The mol­ecules of N,N′‐bis­(2‐pyridylmeth­yl)ferrocene‐1,1′‐diyl­dicarboxamide, [Fe(C12H11N2O)2], contain intra­molecular N—H⋯N hydrogen bonds and are linked into sheets by three independent C—H⋯O hydrogen bonds. The mol­ecules of the isomeric compound N,N′‐bis­(3‐pyridylmeth­yl)ferrocene‐1,1′‐diyldicarboxamide lie across inversion centres, and the mol­ecules are linked into sheets by a combination of N—H⋯N hydrogen bonds and π–π stacking inter­actions between pyridyl groups.  相似文献   

5.
In the title compound, C22H25N5OS·2H2O, the mol­ecules are stacked in columns running along the b axis. In this arrangemant, the mol­ecules are linked to each other by a combination of one two‐centre N—H⋯O hydrogen bond and four two‐centre O—H⋯O hydrogen bonds containing two types of ring motif, viz.R44(10) and R33(11). In the crystal structure, centrosymmetric π–π inter­actions between the triazole rings, with a distance of 3.691 (2) Å between the ring centroids, also affect the packing of the mol­ecules.  相似文献   

6.
In the crystal structure of the title compound, C9H9NO3, there are strong intra­molecular O—H⋯N and inter­molecular O—H⋯O hydrogen bonds which, together with weak inter­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules. The calculated inter­molecular hydrogen‐bond energies are −11.3 and −2.7 kJ mol−1, respectively, showing the dominant role of the O—H⋯O hydrogen bonding. A natural bond orbital analysis revealed the electron contribution of the lone pairs of the oxazoline N and O atoms, and of the two hydr­oxy O atoms, to the order of the relevant bonds.  相似文献   

7.
In the title compound, 2‐hydr­oxy‐1,2‐diphenyl­ethanone 4‐ethyl­thio­semicarbazone, C17H19N3OS, the thio­semi­carbazone moiety is planar and has an E configuration. The planar phenyl rings make dihedral angles of 82.34 (8) and 8.07 (17)° with the plane of the thio­semicarbazone moiety. The crystal structure contains two intra­molecular (N—H⋯O and N—H⋯N) and one inter­molecular inter­action (O—H⋯S), as well as two C—H⋯π(benzene) inter­actions. Mol­ecules are stacked in columns running along the a axis. Mol­ecules in each column are connected to each other by means of linear O—H⋯S hydrogen bonds and C—H⋯π inter­actions. In addition, there are also C—H⋯π(benzene) inter­actions between the columns.  相似文献   

8.
The asymmetric unit of the title compound, C10H8O2, contains two planar symmetry‐independent mol­ecules linked by an O—H⋯O hydrogen bond. In the crystal structure, mol­ecules are linked into infinite chains of rings, formed by a combination of O—H⋯O and C—H⋯O hydrogen bonds, and additionally reinforced by π–π stacking inter­actions. Adjacent chains are connected by weak C—H⋯π inter­actions.  相似文献   

9.
Two of the title compounds, namely (E)‐1,2‐bis­(1‐methyl­benzimidazol‐2‐yl)ethene, C18H16N4, (Ib), and (E)‐1,2‐bis­(1‐ethyl­benzimidazol‐2‐yl)ethene, C20H20N4, (Ic), consist of centrosymmetric trans‐bis­(1‐alkyl­benzimidazol‐2‐yl)ethene mol­ecules, while 3‐eth­yl‐2‐[(E)‐2‐(1‐ethyl­benzimidazol‐2‐yl)­ethen­yl]benzimidazol‐1‐ium perchlorate, C20H21N4+·ClO4, (II), contains the monoprotonated analogue of compound (Ic). In the three structures, the benzimidazole and benzimidazolium moieties are essentially planar; the geometric parameters for the ethene linkages and their bonds to the aromatic groups are consistent with double and single bonds, respectively, implying little, if any, conjugation of the central C=C bonds with the nitro­gen‐containing rings. The C—N bond lengths in the N=C—N part of the benzimidazole groups differ and are consistent with localized imine C=N and amine C—N linkages in (Ib) and (Ic); in contrast, the corresponding distances in the benzimidazolium cation are equal in (II), consistent with electron delocalization resulting from protonation of the amine N atom. Crystals of (Ib) and (Ic) contain columns of parallel mol­ecules, which are linked by edge‐over‐edge C—H⋯π overlap. The columns are linked to one another by C—H⋯π inter­actions and, in the case of (Ib), C—H⋯N hydrogen bonds. Crystals of (II) contain layers of monocations linked by π–π inter­actions and separated by both perchlorate anions and the protruding eth­yl groups; the cations and anions are linked by N—H⋯O hydrogen bonds.  相似文献   

10.
The two title compounds, both with formula C18H16ClN3O, are structurally similar Schiff bases derived from the condensation of 4‐chloro­benzaldehyde or 2‐chloro­benzaldehyde with 4‐amino­anti­pyrine in methanol solution. As expected, both compounds adopt trans configurations about the central C=N bonds. In the crystal structure of the 4‐chloro analogue, mol­ecules are linked through weak C—H⋯O hydrogen bonds, forming chains running along the a axis. In the crystal structure of the 2‐chloro analogue, mol­ecules are linked through weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the ab plane.  相似文献   

11.
The title compound, C14H19N3OS, is in the thio­keto form, with the thione S and hydrazine N atoms cis with respect to each other so that the S atom is involved in inter‐ and intra­molecular hydrogen bonds simultaneously. Inter­molecular C—H⋯S and C—H⋯O hydrogen bonds result in one‐dimensional polymeric chains of mol­ecules along the a axis. A weak C—H⋯π ring inter­action binds the polymeric chains together.  相似文献   

12.
In the title compound, C25H30NO+·Cl, the mol­ecules are linked by a combination of inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds and intra­molecular N—H⋯O hydrogen bonds. The absolute configuration of the new stereogenic centre (the C atom adjacent to the N atom on the phenol side) is determined to have an R configuration.  相似文献   

13.
In the crystal structure of the title compound, C11H13NO2, there are strong inter­molecular O—H⋯N hydrogen bonds which, together with weak intra­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules, held together by weak inter­molecular C—H⋯O hydrogen bonds. A theoretical investigation of the hydrogen bonding, based on density functional theory (DFT) employing periodic boundary conditions, is in agreement with the experimental data. The cluster approach shows that the influence of the crystal field and of hydrogen‐bond formation are responsible for the deformation of the 2‐oxazoline ring, which is not planar and adopts a 4T3 (C3TC2) conformation.  相似文献   

14.
The title compounds, C10H12N4, (I), and C9H10N4, (II), have been synthesized and characterized both spectroscopically and structurally. The dihedral angles between the triazole and benzene ring planes are 26.59 (9) and 42.34 (2)°, respectively. In (I), mol­ecules are linked principally by N—H⋯N hydrogen bonds involving the amino NH2 group and a triazole N atom, forming R44(20) and R24(10) rings which link to give a three‐dimensional network of mol­ecules. The hydrogen bonding is supported by two different C—H⋯π inter­actions from the tolyl ring to either a triazole ring or a tolyl ring in neighboring mol­ecules. In (II), inter­molecular hydrogen bonds and C—H⋯π inter­actions produce R34(15) and R44(21) rings.  相似文献   

15.
Crystals of the title compound, C8H14ClNO3, belong to the space group Cc and are characterized by an asymmetric unit containing two mol­ecules, both with a twisted conformation. The mol­ecular packing is stabilized by N—H⋯O=C hydrogen bonds between the amide groups of mol­ecules with the same conformation. In addition, hydrogen‐bonded cyclic carboxylic acid dimers are established between mol­ecules with a different conformation. The ClCH2—CONH bond has a cis conformation in order to favour an intra­molecular Cl⋯HN electrostatic inter­action. Weak intra‐ and inter­molecular CH2⋯O=C inter­actions are also present.  相似文献   

16.
The title compound, C24H26BrN3OS, crystallizes in the triclinic space group P, with two independent mol­ecules in the asymmetric unit. The mol­ecules adopt an E geometry about the azomethine C=N double bond. The structure is stabilized as dimers by N—H⋯N hydrogen bonding. C—H⋯π and π–π inter­actions are also effective in the crystal packing.  相似文献   

17.
The title compound, C6H12NO5P, was synthesized as an inter­mediate phase in a search for new N‐(phosphono­methyl)glycine derivatives. The mol­ecules are held together by O—H⋯O hydrogen bonds, forming chains along the b axis in the crystal structure. The observed mol­ecular structure is compared with that calculated by the density functional theory method.  相似文献   

18.
The structures of the three title isomers, namely 4‐(2‐methyl­anilino)pyridine‐3‐sulfonamide, (I), 4‐(3‐methyl­anilino)pyridine‐3‐sulfonamide, (II), and 4‐(4‐methyl­anilino)pyridine‐3‐sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen‐bonding arrangements. In all three mol­ecules, the conformation of the 4‐amino­pyridine‐3‐sulfon­amide moiety is conserved by an intra­molecular N—H⋯O hydrogen bond and a C—H⋯O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.  相似文献   

19.
The syntheses, X‐ray structural investigations and calculations of the conformational preferences of the carbonyl substituent with respect to the pyran ring have been carried out for the two title compounds, viz. C15H14N2O2, (II), and C20H16N2O2·C2H3N, (III), respectively. In both mol­ecules, the heterocyclic ring adopts a flattened boat conformation. In (II), the carbonyl group and a double bond of the heterocyclic ring are syn, but in (III) they are anti. The carbonyl group forms a short contact with a methyl group H atom in (II). The dihedral angles between the pseudo‐axial phenyl substituent and the flat part of the pyran ring are 92.7 (1) and 93.2 (1)° in (II) and (III), respectively. In the crystal structure of (II), inter­molecular N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a sheet along the (103) plane, while in (III), they link the mol­ecules into ribbons along the a axis.  相似文献   

20.
In the title compound, C28H30BrN3O4, the mol­ecules are linked by C—H⋯Br and N—H⋯O hydrogen bonds into one‐dimensional chains, which are arranged into a three‐dimensional network through a combination of C—H⋯O hydrogen bonds and two kinds of π–π inter­actions between the benzene rings of the anthraquinone units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号