首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Syntheses, and electrochemical properties of two novel complexes, [Cu(phendio)(L ‐Phe)(H2O)](ClO4) ·H2O (1) and [Ni(phendio)(Gly)(H2O)](ClO4)·H2O (2) (where phendio = 1,10‐phenanthroline‐5,6‐dione, L ‐Phe = L ‐phenylalanine, Gly = glycine), are reported. Single‐crystal X‐ray diffraction results of (1) suggest that this complex structure belongs to the orthorhombic crystal system. The electrochemical properties of free phendio and these complexes in phosphate buffer solutions in a pH range between 2 and 9 have been investigated using cyclic voltammetry. The redox potential of these compounds is strongly dependent on the proton concentration in the range of ? 0.3–0.4 V vs SCE (saturated calomel reference electrode). Phendiol reacts by the reduction of the quinone species to the semiquinone anion followed by reduction to the fully reduced dianion. At pH lower than 4 and higher than 4, reduction of phendio proceeds via 2e?/3H+ and 2e?/2H+ processes. For complexes (1) and (2), being modulated by the coordinated amino acid, the reduction of the phendio ligand proceeds via 2e?/2H+ and 2e?/H+ processes, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The oxidation of D ‐glucitol and D ‐mannitol by CrVI yields the aldonic acid (and/or the aldonolactone) and CrIII as final products when an excess of alditol over CrVI is used. The redox reaction occurs through a CrVI→CrV→CrIII path, the CrVI→CrV reduction being the slow redox step. The complete rate laws for the redox reactions are expressed by: a) −d[CrVI]/dt {kM2 H [H+]2+kMH [H+]}[mannitol][CrVI], where kM2 H (6.7±0.3)⋅10 M s−1 and kMH (9±2)⋅10 M s−1; b) −d[CrVI]/dt {kG2 H [H+]2+kGH [H+]}[glucitol][CrVI], where kG2 H (8.5±0.2)⋅10 M s−1 and kGH (1.8±0.1)⋅10 M s−1, at 33°. The slow redox steps are preceded by the formation of a CrVI oxy ester with λmax 371 nm, at pH 4.5. In acid medium, intermediate CrV reacts with the substrate faster than CrVI does. The EPR spectra show that five‐ and six‐coordinate oxo‐CrV intermediates are formed, with the alditol or the aldonic acid acting as bidentate ligands. Pentacoordinate oxo‐CrV species are present at any [H+], whereas hexacoordinate ones are observed only at pH<2 and become the dominant species under stronger acidic conditions where rapid decomposition to the redox products occurs. At higher pH, where hexacoordinate oxo‐CrV species are not observed, CrV complexes are stable enough to remain in solution for several days to months.  相似文献   

3.
New boron‐dipyrromethene (BODIPY) dyes linked to viologen are prepared and their photophysical and electrochemical properties are investigated. Both synthesized molecules have similar electronic absorption spectra with the absorption maximum localized at 517 and 501 nm for dye 1 and dye 2 , respectively. They exhibit well‐defined redox behavior, highlighting the presence of BODIPY and viologen subunits, with little perturbation of the redox potential of both subunits with respect to the parent compounds. Both dyes are heavily quenched by photoinduced electron transfer from the BODIPY to the viologen subunit. The transient absorption technique demonstrates that dye 2 forms the viologen radical within a timeframe of 7.1 ps, and that the charge‐separated species has a lifetime of 59 ps. Sustained irradiation of dye 2 in the presence of a tertiary amine allows for the accumulation of BODIPY–methyl‐4,4′‐bipyridinium (BODIPY–MV+), as observed by its characteristic absorption at 396 and 603 nm. However, dye 2 does not generate catalytic amounts of hydrogen under standard conditions.  相似文献   

4.
Redox‐inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox‐inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII‐(O2)‐Zn(CF3SO3)2 ( 1 ‐Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one‐electron oxidation and reduction potentials of 1 ‐Zn2+. This further changes the reactivities of 1 ‐Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1 ‐Zn2+, whereas 1 ‐Zn2+ coordinating two water molecules, (TMC)FeIII‐(O2)‐Zn(CF3SO3)2‐(OH2)2 [ 1 ‐Zn2+‐(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1 ‐Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1 ‐Zn2+‐(OH2)2. The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.  相似文献   

5.
Bistable [2]rotaxanes have been attached through a bulky tripodal linker to the surface of titanium dioxide nanoparticles and studied by cyclic voltammetry and spectroelectrochemical methods. The axle component in the [2]rotaxane contains two viologen sites, V1 and V2, interconnected by a rigid terphenylene bridge. In their parent dication states, V12+ and V22+ can both accommodate a crown ether ring, C, but are not equivalent in terms of their affinity towards C and have different electrochemical reduction potentials. The geometry and size of the tripodal linker help to maintain a perpendicular [2]rotaxane orientation at the surface and to avoid unwanted side‐to‐side interactions. When the rigid [2]rotaxane or its corresponding axle are adsorbed on a TiO2 nanoparticle, viologen V22+ is reduced at significantly more negative potentials (?0.3 V) than in flexible analogues that contain aliphatic bridges between V1 and V2. These overpotentials are analysed in terms of electron‐transfer rates and a donor–bridge–acceptor (D–B–A) formalism, in which D is the doubly reduced viologen, V10, adjacent to the TiO2 surface (TiO2–V10), B is the terphenylene bridge and A is viologen V22+. We have also found that, in contrast with earlier findings in solution, no molecular shuttling occurs in rigid [2]rotaxane adsorbed at the surface. The observations were explained by the relative position of the viologen stations within the electrical double layer, screening of V22+ by the counterions and high capacity of the medium, which reduces the mobility of the crown ether. The results are useful in transposing of solution‐based molecular switches to the interface or in the design and understanding of the properties of systems comprising electroactive and/or interlocked molecules adsorbed at the nanostructured TiO2 surface.  相似文献   

6.
《Electroanalysis》2005,17(7):556-570
Composites of inherently conductive polypyrrole (PPy) within highly hydrophilic poly(2‐hydroxyethyl methacrylate)‐based hydrogels (p(HEMA)) have been fabricated and their electrochemical properties investigated. The electrochemical characteristics observed by cyclic voltammetry suggest less facile reduction of PPy within the composite hydrogel compared to electropolymerized PPy, as shown by the shift in the reduction peak potential from ?472 mV for electropolymerized polypyrrole to ?636 mV for the electroconductive composite gel. The network impedance magnitude for the electroconductive hydrogel remains quite low, ca. 100 Ω, even upon approach to DC, over all frequencies and at all offset potentials suggesting retained electronic (bipolaronic) conductivity within the composite. In contrast, sustained application of +0.7 V (vs. Ag/AgCl, 3 M Cl?) for typically 100 min. (conditioning) to reduce the background amperometric current to <1.0 μA, resulted in complete loss of electroactivity. Nyquist plots suggest that sustained application of such a modest potential to the composite hydrogel results in impedance characteristics that resembles p(HEMA) without evidence of the conducting polymer component. PPy composite gels supported a larger ferrocene monocarboxylate diffusivity (Dappt=7.97×10?5 cm2 s?1) compared to electropolymerized PPy (Dappt=5.56×10?5 cm2 s?1), however a marked reduction in diffusivity (Dappt=1.01×10?5 cm2 s?1) was observed with the conditioned hydrogel composite. Cyclic voltammograms in buffer containing H2O2 showed an absence of redox peaks for electrodes coated with PPy‐containing membranes, suggesting possible chemical oxidation of polypyrrole by the oxidant  相似文献   

7.
The structural information gained from the study of the chiral building block (R)‐(?)‐4‐(3,4‐di­chloro­phenyl)‐4‐(2‐pyridyl)­butanoic acid–l ‐(?)‐ephedrine [methyl(1‐hydroxy‐1‐phenyl­prop‐2‐yl)ammon­ium 4‐(3,4‐di­chloro­phenyl)‐4‐(2‐pyrid­yl)but­an­oate], C10H16NO+·C15H12Cl2NO2?, can be used to deduce the absolute configuration of highly potent arpromidine‐type hist­amine H2 receptor agonists, as the chiral butanoic acid can be converted to (R)‐(?)‐3‐(3,4‐di­chloro­phenyl)‐3‐(2‐pyridyl)­propyl­amine and to the corresponding R‐configured arpromidine analogue.  相似文献   

8.
Ammonium N‐acetyl‐l ‐threoninate, NH4+·C6H10NO4?, and methyl­ammonium N‐acetyl‐l ‐threoninate, CH6N+·­C6H10NO4?, crystallize in the orthorhombic P212121 and monoclinic P21 space groups, respectively. The two crystals present the same packing features consisting of infinite ribbons of screw‐related N‐acetyl‐l ‐threoninate anions linked together through pairs of hydrogen bonds. The cations interconnect neighbouring ribbons of anions involving all the nitrogen‐H atoms in three‐dimensional networks of hydrogen bonds. The hydrogen‐bond patterns include asymmetric `three‐centred' systems. In both structures, the Thr side chain is in the favoured (g?g+) conformation.  相似文献   

9.
Different modified multiwalled carbon nanotubes (MWCNTs) are prepared by heat treatments in the air and in the H2SO4?+?HNO3 (1:1) mixed acids which are investigated by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Brunaur–Emmett–Teller, and cyclic voltammetry measurements. The results show the physicochemical properties of MWCNTs change significantly after these different modification processes, especially the electrochemical catalytic activity towards the VO2 +/VO2+ and V3+/V2+ redox pairs. The MWCNTs treated in the air at 600 °C for 30 min shows better electrochemical performances for the VO2 +/VO2+ redox reactions (58.8 and ?32.4 μA for the oxidation and reduction peaks at 10 mV?s?1, respectively) than any other samples. Compared with the V3+/V2+ redox couple, the VO2 +/VO2+ redox reactions are more easily affected by the physicochemical property changes of the MWCNTs. The enhanced electrochemical catalytic activity of the modified MWCNTs is not only related to the surface oxygen content, but also to the specific surface area, conductivity and the unique structure variations of the MWCNTs. The investigation demonstrated that the modified MWCNTs have a promising future application in the vanadium redox flow battery.  相似文献   

10.
Reported herein is a new concept for the labelling of biomolecules with small [99 mTcO3]+ complexes through a [3+2] cycloaddition with alkenes for radiopharmaceutical applications. We developed convenient reactions for the synthesis of small, water stable fac‐[TcO3(tacn‐R)]+ complexes (99Tc and 99mTc, tacn=1,4,7‐triazacyclononane, R=H, ‐CH2‐C6H5, ‐CH2‐C6H4COOH). With alkenes, these high valent [99mTcO3]+ complexes undergo [3+2] cycloaddition with formation of the corresponding TcV–glycolato complexes. The 99mTcV and 99mTcVII complexes are stable at 37 °C in water and in the presence of serum proteins. Therefore, new opportunities in technetium chemistry are enabled with a high potential for medicinal and biological applications. In contrast to classical labelling, the presented strategy is ligand and not metal‐centred.  相似文献   

11.
Stimuli‐responsive polypeptides are receiving much attention for drug delivery systems and tissue engineering scaffolds; however, it is challenging to construct multiple‐responsive polypeptides and one‐component polymeric hydrogels. Herein, a novel type of triple redox/temperature‐responsive diselenide‐containing poly(methoxydiethylene glycol‐l ‐glutamate) homopolypeptide was facilely synthesized by selenocystamine‐initiated ring‐opening polymerization in DMF at 30 °C, and their chemical structures and physical properties were fully characterized by means of 1H NMR, GPC, FT‐IR, WAXD, and CD. They self‐assembled into spherical micelles in aqueous solution, which possess a lower critical solution temperature, redox‐responsiveness inherited from diselenide bond, and the triple stimuli‐sensitive self‐assembly behaviors, as characterized by means of turbidity, DLS, TEM, and zeta potential measurements. The diselenide‐containing homopolypeptides formed supramolecular hydrogels at room temperature, exhibiting a thermal gel–sol transition. The rheological tests evidence that the mechanical modulus of the hydrogel is independent of angular frequency within 100 rad/s and at 25 °C, in which the storage modulus of G′ is order of magnitude greater than the loss modulus of G″, displaying a solid‐like elastic behavior. Moreover, the mechanical modulus of the hydrogel can be tuned by changing the chain length of the homopolypeptide, the 10‐mM 1,4‐dithiothreitol (DTT) reduction, and 1 mM H2O2 oxidation, respectively. Consequently, this work provides a simple strategy to fabricate triple‐stimuli responsive polypeptide micelles and one‐component hydrogels. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1067–1077  相似文献   

12.
Aptamer‐based biosensors offer promising perspectives for high performance, specific detection of proteins. The thrombin binding aptamer (TBA) is a G‐quadruplex‐forming DNA sequence, which is frequently elongated at one end to increase its analytical performances in a biosensor configuration. Herein, we investigate how the elongation of TBA at its 5′ end affects its structure and stability. Circular dichroism spectroscopy shows that TBA folds in an antiparallel G‐quadruplex conformation with all studied cations (Ba2+, Ca2+, K+, Mg2+, Na+, NH4+, Sr2+ and the [Ru(NH3)6]2+/3+ redox marker) whereas other structures are adopted by the elongated aptamers in the presence of some of these cations. The stability of each structure is evaluated on the basis of UV spectroscopy melting curves. Thermal difference spectra confirm the quadruplex character of all conformations. The elongated sequences can adopt a parallel or an antiparallel structure, depending on the nature of the cation; this can potentially confer an ion‐sensitive switch behavior. This switch property is demonstrated with the frequently employed redox complex [Ru(NH3)6]3+, which induces the parallel conformation at very low concentrations (10 equiv per strand). The addition of large amounts of K+ reverts the conformation to the antiparallel form, and opens interesting perspectives for electrochemical biosensing or redox‐active responsive devices.  相似文献   

13.
A mononuclear nonheme manganese(IV)–oxo complex binding the Ce4+ ion, [(dpaq)MnIV(O)]+–Ce4+ ( 1 ‐Ce4+), was synthesized by reacting [(dpaq)MnIII(OH)]+ ( 2 ) with cerium ammonium nitrate (CAN). 1 ‐Ce4+ was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI‐MS, resonance Raman, XANES, and EXAFS, showing an Mn?O bond distance of 1.69 Å with a resonance Raman band at 675 cm?1. Electron‐transfer and oxygen atom transfer reactivities of 1 ‐Ce4+ were found to be greater than those of MnIV(O) intermediates binding redox‐inactive metal ions ( 1 ‐Mn+). This study reports the first example of a redox‐active Ce4+ ion‐bound MnIV‐oxo complex and its spectroscopic characterization and chemical properties.  相似文献   

14.
Postsynthetic installation of lanthanide cubanes into a metallosupramolecular framework via a single‐crystal‐to‐single‐crystal (SCSC) transformation is presented. Soaking single crystals of K6[Rh4Zn4O(l ‐cys)12] (K6[ 1 ]; l ‐H2cys=l ‐cysteine) in a water/ethanol solution containing Ln(OAc)3 (Ln3+=lanthanide ion) results in the exchange of K+ by Ln3+ with retention of the single crystallinity, producing Ln2[ 1 ] ( 2Ln ) and Ln0.33[Ln4(OH)4(OAc)3(H2O)7][ 1 ] ( 3Ln ) for early and late lanthanides, respectively. While the Ln3+ ions in 2Ln exist as disordered aqua species, those in 3Ln form ordered hydroxide‐bridged cubane clusters that connect [ 1 ]6? anions in a 3D metal‐organic framework through coordination bonds with carboxylate groups. This study shows the utility of an anionic metallosupramolecular framework with carboxylate groups for the creation of a series of metal cubanes that have great potential for various applications, such as magnetic materials and heterogeneous catalysts.  相似文献   

15.
In phosphate buffer media (pH 5.8–8.0), bisperoxo(1,10‐phenanthroline)oxovanadate(V) ( 1 ) oxidizes l ‐methionine to methionine sulfoxide. The stoichiometry of the reaction is 1:1. The reaction occurs in two subsequent first‐order steps. In the first step, one of the peroxo ligands of 1 gets substituted by l ‐methionine. The observed first‐order rate constants for both steps increase linearly with increasing [H+] as well as with increasing [l ‐methionine]. The EPR spectra prove that the reaction involves a cysteinyl radical‐type intermediate and that VV gets reduced to a VIV species.  相似文献   

16.
《Electroanalysis》2017,29(5):1469-1473
The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalysts with enhanced activity to improve the battery performance. Herein, we synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen‐doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivity, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as‐prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.  相似文献   

17.
Understanding cation (H+, Li+, Na+, Al3+, etc.) intercalation/de‐intercalation chemistry in transition metal compounds is crucial for the design of cathode materials in aqueous electrochemical cells. Here we report that orthorhombic vanadium oxides (V2O5) supports highly reversible proton intercalation/de‐intercalation reactions in aqueous media, enabling aluminum electrochemical cells with extended cycle life. Empirical analyses using vibrational and x‐ray spectroscopy are complemented with theoretical analysis of the electrostatic potential to establish how and why protons intercalate in V2O5 in aqueous media. We show further that cathode coatings composed of cation selective membranes provide a straightforward method for enhancing cathode reversibility by preventing anion cross‐over in aqueous electrolytes. Our work sheds light on the design of cation transport requirements for high‐energy reversible cathodes in aqueous electrochemical cells.  相似文献   

18.
A new type of molecular arrangement for dipeptides is observed in the crystal structure of l ‐phenyl­alanyl‐l ‐alanine dihydrate, C12H16N2O3·2H2O. Two l ‐Phe and two l ‐Ala side chains aggregate into large hydro­phobic columns within a three‐dimensional hydrogen‐bond network.  相似文献   

19.
Extending the conjugation of viologen by a planar thiazolo[5,4‐d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water‐soluble π‐conjugation extended viologen, 4,4′‐(thiazolo[5,4‐d]thiazole‐2,5‐diyl)bis(1‐(3‐(trimethylammonio)propyl)pyridin‐1‐ium) tetrachloride, [(NPr)2TTz]Cl4 , as a novel two‐electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4‐trimethylammonium‐TEMPO (NMe‐TEMPO) as catholyte, [(NPr)2TTz]Cl4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L?1. A demonstrated [(NPr)2TTz]Cl4 /NMe‐TEMPO AORFB delivered an energy efficiency of 70 % and 99.97 % capacity retention per cycle.  相似文献   

20.
The title dipeptide, 1‐(tert‐butoxy­carbonyl‐d ‐alanyl)‐N‐iso­propyl‐l ‐pipecol­amide or Boc‐d ‐Ala‐l ‐Pip‐NHiPr (H‐Pip‐OH is pipecolic acid or piperidine‐2‐carboxylic acid), C17H31N3­O4, with a d –l heterochiral sequence, adopts a type II′β‐­turn conformation, with all‐trans amide functions, where the C‐terminal amide NH group interacts with the Boc carbonyl O atom to form a classical i+3 i intramolecular hydrogen bond. The Cα substituent takes an axial position [Hα (Pip) equatorial] and the trans pipecolamide function is nearly planar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号