首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratinases can be used for the production of potentially important hydrolyzed proteins and chemicals. This study investigated the keratinolytic activity ofStreptomyces sp on keratinaceous materials like wool. High levels of proteolytic and keratinolytic activity were obtained after 96 h of culture when two Streptomyces sp strains were grown on basal medium containing mineral salts and 3% (w/v) of defatted wool as a source of energy, carbon, and nitrogen. The cell-free culture filtrates exhibited rapid proteolytic digestion of keratin powder. Currently, the authors are testing whether the enzymatic activity obtained is in fact keratinolytic, and not only an alkaline protease activity.  相似文献   

2.
An investigation into the influence of UV irradiation on elastin hydrolysates in the presence of collagen was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorbance of elastin hydrolysates in solution increased during irradiation more than the absorbance of the elastin/collagen blend. The fluorescence of elastin hydrolysates was observed at 305nm and at 380nm after excitation at 270nm. For the elastin/collagen mixture in solution, fluorescence spectrum shows only one maximum at 305nm. UV irradiation caused fluorescence fading at 305nm. For irradiated elastin the fluorescence at 305nm decreased faster than for the irradiated elastin/collagen mixture. The maximum of the fluorescence peak was shifted for elastin by 4nm, whereas for the elastin/collagen blends the shift was only 1-2nm. All the obtained results point out the ability of mixing elastin and collagen, and suggest that the elastin/collagen mixture in solution is less sensitive to UV irradiation than elastin hydrolysates alone.  相似文献   

3.
The cell-free lysate of free-living amebae Naegleria gruberi and Naegleria fowleri were reported to elicit cytopathic effect in various cell lines that could be indefinitely transmitted by the culture media. The causative agent showed sensitivity to treatments detrimental to proteins while resisted exposures damaging to nucleic acids. Here we demonstrate that subsequent to exposure to N. gruberi lysate mild digestion with proteinase K reveals the presence of a protein band in HeLa cells absent from control cell lines. Though the small quantity of this protein with enhanced resistance to proteinase K relative to the total protein content of the sample has proved to date insufficient for its purification, we suppose that it is a human cellular protein that assumed altered conformation in a prion-like fashion. The conformational conversion could have been trigerred by an ameba protein in the lysate. In addition, we showed that HeLa cells treated with N. gruberi lysate display elevated cathepsin B activity which is assumed to be a secondary response to the accumulation of the proteinase K-resistant protein. We propose that a number of degenerative sequelae following previous microbial infections in mammals could have a similar pathomechanism. Moreover, epidemiological data strongly suggest that natural prion disease in sheep, goat and cervids may also have an etiology linked to prior infection/colonization with a microbe, as it had already been proposed by one of us.  相似文献   

4.
Substantial evidence indicates that the disease-associated conformer of the prion protein (PrP(TSE)) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrP(TSE) has the ability to convert the conformation of the normal prion protein (PrP(C)) into a β-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrP(TSE) at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrP(TSE), the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.  相似文献   

5.
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and characterized by cognitive and memory impairments. Emerging evidence suggests that the extracellular matrix (ECM) in the brain plays an important role in the etiology of AD. It has been detected that the levels of ECM proteins have changed in the brains of AD patients and animal models. Some ECM components, for example, elastin and heparan sulfate proteoglycans, are considered to promote the upregulation of extracellular amyloid-beta (Aβ) proteins. In addition, collagen VI and laminin are shown to have interactions with Aβ peptides, which might lead to the clearance of those peptides. Thus, ECM proteins are involved in both amyloidosis and neuroprotection in the AD process. However, the molecular mechanism of neuronal ECM proteins on the pathophysiology of AD remains elusive. More investigation of ECM proteins with AD pathogenesis is needed, and this may lead to novel therapeutic strategies and biomarkers for AD.  相似文献   

6.
Altered collagen and elastin content correlates closely with remodeling of the arterial wall after injury. Optical analytical approaches have been shown to detect qualitative changes in plaque composition, but the capacity for detection of quantitative changes in arterial collagen and elastin content in vivo is not known. We have assessed fluorescence spectroscopy for detection of quantitative changes in arterial composition in situ, in rabbit models of angioplasty and stent implant. Fluorescence emission intensity (FEI) recorded at sites remote from the primary implant site was correlated with immunohistochemical (IH) analysis and extracted elastin and collagen. FEI was significantly decreased (P<0.05) after treatment with anti-inflammatory agents, and plaque area decreased on comparison with saline-treated rabbits after stent implant or angioplasty (Por=0.961) analysis were detected by multiple regression (MR) analysis. Good correlations also were found for FEI with elastin and collagen measured by high-performance liquid chromatography; MR analysis provided highly predictive values for collagen and elastin (R2>or=0.994). Fluorescence spectroscopic analysis detects quantitative compositional changes in arterial connective tissue in vivo, demonstrating changes at sites remote from primary angioplasty and stent implant sites.  相似文献   

7.
The ability of streptomycin to form multimolecular aggregates with pathogenic prion proteins and their recovery by precipitation via a low-speed centrifugation step has been demonstrated; these novel properties of streptomycin make it a useful substance that increases the sensitivity of laboratory diagnostic techniques for prion infections in man and animals.  相似文献   

8.
Several feather-degrading bacterial isolates were isolated from Egyptian soil. These isolates were able to degrade chicken feather, when grown on basal medium containing 1% native feather as a source of energy, carbon, and nitrogen. Feather waste, generated in large quantities as a byproduct of commercial poultry processing, is nearly pure keratin, which is not easily degradable by common proteolytic enzymes. The isolates were identified according to the morphological characteristics, biochemical tests, and API 50 CHBBacillus system. Proteolytic and keratinolytic activities of these isolates were monitored throughout the cultivation of the bacterial isolates on feather. Resulting soluble proteins, which were released as a result of the biodegradation of feather, were demonstrated by SDS-PAGE.  相似文献   

9.
The prion proteins may play a critical role in copper homeostasis and the antioxidant activity in the brain. This review presents the state of art in the studies on Cu2+ prion systems. The proteins discussed are from different species from mammals to fishes. All proteins are His-rich and the research discussed clearly indicates the basic role of imidazole side chains and the adjacent amide nitrogen atoms in metal ion binding. Prions represent the family of proteins with new mode of Cu2+ binding which includes the amide nitrogen coordination. The multi-imidazole coordination is also likely and it can play a critical role in the antioxidant activity of the copper–prion complexes. The combination of the imidazole and amide nitrogen atoms to Cu2+ ions could also be relevant in histidine-rich peptide antibiotics including demegen. The impact of peptide sequence and His positions on copper binding ability is also discussed.  相似文献   

10.
Fabrication of keratin–collagen (KC) 3D scaffold with improved thermal denaturation rate is reported. In vitro application of (KC) scaffold stimulates basic extra cellular matrix constituents. KC Scaffold considerably reduced undesirable properties of both collagen and keratin while collagen incorporation reduces the fragility with increases of strength and flexibility in the scaffold. In addition to this, the scaffold showed homogenous well‐interconnected pores in the range of 10–100 µm when observed in scanning electron microscope. Usage of keratin in KC scaffold offers increased biodegradation rate and higher denaturation rate in addition to its rapid cell growth with normal morphology ultimately reaching cell population of 3.9–9.7 million per cm3 after 48 hr in KC scaffold. Circular dichroism (CD) and Fourier transform spectroscopy (FT‐IR) of KC showed presence of helical structure of collagen and ß‐turns of keratin confirming retention of native structures of both the proteins KC scaffold showed good swelling behavior and water uptake. Our study strongly supports the superidity of KC scaffold over the collagen or keratin when they are independently used for tissue engineering applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Treatment of skin diseases with the combination of 8-methoxypsoralen and ultraviolet A radiation (PUVA) results in clinical alterations in treated skin that resemble those observed in chronically photodamaged skin. The PUVA-treated patients develop nonmelanoma skin cancers, pigmentary alterations and wrinkling characteristic of sun-induced changes. The major alteration in the dermis of sun-damaged skin is the deposition of abnormal elastic fibers, termed solar elastosis. Up-regulation of elastin promoter activity in dermal fibroblasts explains the excess elastic tissue but not the reason for the aberrant morphology of the elastotic material. In order to study photoaging in an experimental system, we utilized a transgenic mouse line that expresses the human elastin promoter/chloramphenicol acetyltransferase construct in a tissue-specific and developmentally regulated manner. Although UVB radiation has been demonstrated to increase promoter activity in vitro, UVA fails to demonstrate a similar effect at the doses utilized. In this study, we demonstrate the ability of PUVA treatment to up-re-gulate elastin promoter activity both in vitro and in vivo. These data help to explain the development of photoaging in sun-protected PUVA-treated skin. We attribute the up-regulation of elastin promoter activity in response to PUVA to the formation of DNA photoadducts, which do not occur in response to UVA radiation alone.  相似文献   

12.
Abstract— The photoejection of electrons from the aromatic amino acids at 77°K by 290–340 nm radiation was found to involve both monophotonic and biphotonic processes. However, only monophotonic processes are involved when electrons are photoejected from cystine or cysteine. These electrons prefer to attach themselves to adjacent sulphur groups rather than the dielectric traps in the matrix, so that both anionic and cationic radicals are formed.
In keratin at 77°K, the disulphide anion radicals are produced by both monophotonic and biphotonic mechanisms, indicating that the electrons captured by the disulphides are photo-ejected from the aromatic amino acids. At room temperature the thiyl and aromatic radicals are produced only by monophotonic reactions.  相似文献   

13.
We report the first biocatalytic route to sulfinamides (R-S(O)-NH2), whose sulfur stereocenter makes them important chiral auxiliaries for the asymmetric synthesis of amines. Subtilisin E did not catalyze hydrolysis of N-acetyl or N-butanoyl arylsulfinamides, but did catalyze a highly enantioselective (E > 150 favoring the (R)-enantiomer) hydrolysis of N-chloroacetyl and N-dihydrocinnamoyl arylsulfinamides. Gram-scale resolutions using subtilisin E overexpressed in Bacillus subtilis yielded, after recrystallization, three synthetically useful auxiliaries: (R)-p-toluenesulfinamide (42% yield, 95% ee), (R)-p-chlorobenzenesulfinamide (30% yield, 97% ee), and (R)-2,4,6-trimethylbenzenesulfinamide (30% yield, 99% ee). Molecular modeling suggests that the N-chloroacetyl and N-dihydrocinnamoyl groups mimic a phenylalanine moiety and thus bind the sulfinamide to the active site. Molecular modeling further suggests that enantioselectivity stems from a favorable hydrophobic interaction between the aryl group of the fast-reacting (R)-arylsulfinamide and the S1' leaving group pocket in subtilisin E.  相似文献   

14.
Solar elastosis is observed in the dermis of photoaged skin and is characterized by an accumulation of abnormal elastin in the extracellular space. Several proteases that degrade elastin in the extracellular space have been implicated in its formation. The lysosomal protease cathepsin K (catK) has recently been described to be highly expressed in skin fibroblasts under certain pathologic conditions. As cat K is one of the most potent mammalian elastases, we hypothesized that catK-mediated intracellular elastin degradation may play a role in the formation of solar elastosis. Immunostaining of cultured skin fibroblasts incubated with labeled elastin demonstrated internalization of extracellular elastin to lysosomes and its degradation by catK. Induction of catK expression in fibroblasts was observed both in vitro and in vivo after exposure to longwave UVA. In contrast to fibroblasts from young donors, cells from old donors failed to activate catK in response to UVA. These data suggest a role of intracellular elastin degradation by catK in the formation of solar elastosis. We propose that an age-related decline in catK activity, in particular after UV exposure, may promote the formation of actinic elastosis through a decline of orderly intracellular elastin degradation and subsequent accumulation of elastin in the extracellular space.  相似文献   

15.
COLLAGEN ALTERATIONS IN CHRONICALLY SUN-DAMAGED HUMAN SKIN   总被引:4,自引:0,他引:4  
Abstract The major histological characteristic of sun-damaged skin is the accumulation of an elastotic material that appears to replace collagen. This elastotic material consists primarily of elastin and histological studies suggest a large loss of collagen in the dermis of chronically sun-damaged skin. In this study, we examine the content and distribution of collagen and procollagen in sun-damaged human skin. The total collagen content of sun-damaged skin was 20% less than nonsolar-exposed skin (524 μ g collagen per mg total protein in sun-damaged skin and 667 μg collagen per mg total protein in nonsolar-exposed skin). In addition, there was a 40% decrease in the content of intact amino propeptide moiety of type III procollagen in sun-damaged skin (0.68 U per 50 mg wet weight) as compared to nonsolar-exposed skin (1.12 U per 50 mg wet weight). The data suggest that this change in collagen content is due to increased degradation. The distribution of collagen in sun-damaged skin was examined by indirect immunofluo-rescence. Mild digestion of sun-damaged skin with elastase removed the elastin and revealed the presence of collagen in the elastotic material. Therefore, the elastin appears to mask the presence of collagen fibers in the dermis of sun-damaged skin.  相似文献   

16.
It is necessary to understand the changes that occur during the initial processing of lamb skins, because these will affect the final quality of the leather. The types of collagen, their macro and micro structures, the presence of proteins other than collagens, and the quantity and the type of proteoglycans, all have a profound effect on the quality of leather. Proteins isolated from untreated or raw sheep skin and from pickled skin (skins treated with sodium sulfide and lime followed by bating with enzymes, then preserved in sodium chloride and sulfuric acid) were significantly different when analysed by use of 2D gel electrophoresis and mass spectrometry. Agarose gel electrophoresis with a very sensitive sequential staining procedure has been used to identify the glycosaminoglycans present in raw and treated skin and their impact on quality of leather. Results showed that effective removal of proteoglycans acting as inter-fibrillar adhesives of collagen fibrils seemed to improve leather quality. Removal of these molecules not only opens up the fibre structure of the skin but may also be important in wool removal. The presence of elastin, which imparts elastic properties to skin, is of significant importance to tanners. The amino acids desmosine and isodesmosine, found exclusively in elastin, were quantitatively analysed to assess the role of elastin in leather quality.  相似文献   

17.
A commercial thermal chemiluminescence (TCL) instrument was modified to allow in situ sample irradiation at wavelengths in the range 320-700 nm under a controlled atmosphere at constant temperature. Weak photo-induced chemiluminescence (PICL) emission was observed from commercial poly(ethylene terephthalate), polyacrylonitrile, and polyamide 6 fabrics, cotton fabric and from the fibrous proteins wool and feather keratin, silk fibroin and bovine skin collagen (Type 1) after exposure to UVA (320-400 nm) or visible light in nitrogen, followed by a change of the atmosphere to oxygen. Collagen emits PICL of similar intensity to keratin, which demonstrates that tryptophan is not essential for PICL emission from proteins. In all cases the decay of PICL with time is complex and does not follow simple first- or second-order kinetics. The effects of experimental variables, including wavelength of radiation and exposure time, sample temperature and fabric pH on the PICL intensity and decay profile are reported for wool keratin.  相似文献   

18.
19.
Matrix assisted laser desorption ionisation ion mobility separation mass spectrometry imaging (MALDI-IMS-MSI) has been employed to image the distribution of proteins in ex-vivo human skin. Using a “bottom-up” proteomics approach employing “on-tissue” digestion the distribution of abundant skin proteins; collagen, keratin, decorin and serum albumin could be mapped. Images have been recorded at 150 and 30 μm spatial resolution. Multivariate statistical analysis of the data has been employed to associate specific proteins with layers of the skin. The improved specificity given by the use of ion mobility separation in mass spectrometric imaging has been demonstrated by separation of peptide ions from phospholipids.  相似文献   

20.
We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号