首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
What is the most favorite and original chemistry developed in your research group?The most favorite and original chemistry developed in my research group is about the reconstitution of motor proteins in artificially designed and assembled units.It is based on the molecular assembly technique,but the method is different from the conventional approach.  相似文献   

2.
What is the most favorite and original chemistry developed in your research group? We focus on developing new organic photovoltaic materials and exploring their applications in photovoltaic devices. Based on the new materials, we can figure out the correlations among chemical strictures, optoelectronic properties, and photovoltaic behaviors. Our group originally demonstrated quite a few build blocks for making conjugated polymers for photovoltaic applications, some of them have been broadly used by the researchers in the field. How do you get into this specific field? Could you please share some experiences with our readers? I got into this field when I was a graduate student in 2002, just because my supervisor gave me a research topic for synthesis of new conjugated polymers. At that moment, as a fresh graduate student, I had no chance to say yes or no, but to do it. The field of organic solar cells is oriented by the new organic photovoltaic materials. In the past decades, the materials have been updated for a few generations, which promoted the device performance to be higher and closer to practical applications. We have to concentrate on the fundamental problems but also need to follow the pace of the filed. How do you supervise your students? In my opinion, the students need more specific projects to get into the field so as to be well trained at the beginning. In the later stage, I prefer to encourage them to find and creatively figure out the real fundamental problems. I used to give them a few questions: Why do you need to do this project? How to make a clear definition for the problem? Can you suggest a new and better approach to solve it? What is the most important personality for scientific research? Passion, perseverance and sense of innovation. What is your favorite journal(s)? The journals publishing the latest and/or systematic research works in chemistry and material science.  相似文献   

3.
Guanghui Ma  Hua Yue 《中国化学》2020,38(9):911-923
Microspheres and microcapsules have been widely used in biomedical field, such as delivery systems for drugs, vaccines. Uniform particle is required for precise drug delivery and disease treatment, since the particle diameter is a key factor which controls the pharmacokinetics and efficacy of loaded drug. However, there is no universal method to prepare uniform particles either from monomer or preformed polymer raw materials. We have developed two membrane emulsification techniques (MET) to prepare uniform particles with controllable size. In this review, we introduce two MET processes and their mechanisms, and how to develop MET to different emulsion systems to obtain various uniform microspheres and microcapsules with interesting morphologies. Then, the advantages of uniform particles on biomedical application results are focused. Finally, particle design and applications as “Chassis” to form synthetic vaccine are described. What is the most favorite and original chemistry developed in your research group? We clarified the mechanism for obtaining uniform microspheres and microcapsules in O/W, W/O and double emulsion systems, which enabled us to develop the technique to a universal technique, successfully preparing various uniform particles including hydrophobic, hydrophilic and composite functional particles, and leading to the original systematic studies on biomedical applications including “Synthetic Vaccine”. How do you get into this specific field? Could you please share some experiences with our readers? I started the research on preparation of nanospheres from my master course. At that time, I knew there were few universal methods to obtain uniform microspheres and microcapsules. So, after I became an assistant professor, I began to consider this scientific topic. How do you supervise your students? Our group motto is “Enjoy Science, Enjoy Work, Enjoy Life”. I tried to lead the students to like their research, and tried to find interesting results with students together based on their primary experimental results. What is the most important personality for scientific research? Pure, Passion, Perseverance. How do you keep balance between research and family? Work hard, and let my family know I am enjoyable and happy with my research, getting support and encouragement from family. Who influences you mostly in your life? My father. He always read books at the desk. He always gave me encouragement no matter happy or sad.  相似文献   

4.
SPONGE(Simulation Package tOward Next GEneration molecular modeling)is a software package for molecular dynamics(MD)simulation of solution and surface molecular systems.In this version of SPONGE,the all-atom potential energy functions used in AMBER MD packages are used by default and other all-atom/coarse-grained potential energy functions are also supported.SPONGE is designed to extend the timescale being approached in MD simulations by utilizing the latest CUDA-enabled graphical processing units(GPU)and adopting highly efficient enhanced sampling algorithms,such as integrated tempering,selective integrated tempering and enhanced sampling of reactive trajectories.It is highly modular and new algorithms and functions can be incorporated con veniently.Particularly,a specialized Python plugin can be easily used to perform the machine learning MD simulation with MindSpore,TensorFlow,PyTorch or other popular machine learning frameworks.Furthermore,a plugin of Finite-Element Method(FEM)is also available to handle metallic surface systems.All these advanced features increase the power of SPONGE for modeling and simulation of complex chemical and biological systems.  相似文献   

5.
The photocatalytic conversion of carbon dioxide into sustainable fuel methanol using carbon quantum dots is highlighted in this paper. The multifaceted roles of carbon quantum dots in photocatalytic reactions and future directions of CQD materials are outlined.  相似文献   

6.
蓝奔月  史海峰 《物理化学学报》2015,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题. 利用太阳光和光催化材料将CO2还原为碳氢燃料, 不仅可以减少空气中CO2浓度, 降低温室效应的影响, 还可以提供碳氢燃料, 缓解能源短缺问题, 因此日益受到各国科学家的高度关注. 本文综述了光催化还原CO2为碳氢燃料的研究进展, 介绍了光催化还原CO2的反应机理, 并对现阶段报道的光催化还原CO2材料体系进行了整理和分类, 包括TiO2光催化材料, ABO3型钙钛矿光催化材料, 尖晶石型光催化材料, 掺杂型光催化材料, 复合光催化材料, V、W、Ge、Ga基光催化材料及石墨烯基光催化材料. 评述了各种材料体系的特点及光催化性能的一些影响因素. 最后对光催化还原CO2的研究前景进行了展望.  相似文献   

7.
Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom‐thick 2D structure with sp2 hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy‐related progress of GR‐based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye‐sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR‐based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy‐metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR‐based materials in the exciting fields of energy, environment, and bioscience.  相似文献   

8.
The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2?xS, into a single nanocrystal, led to a unique ternary multi‐node sheath ZnS–CdS–Cu2?xS heteronanorod for full‐spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2?xS and CdS leads to staggered gaps, as confirmed by first‐principles simulations. This band alignment causes effective electron–hole separation in the ternary system and hence enables efficient solar energy conversion.  相似文献   

9.
Aerogel structures have attracted increasing research interest in energy storage and conversion owing to their unique structural features, and a variety of materials have been engineered into aerogels, including carbon‐based materials, metal oxides, linear polymers and even metal chalcogenides. However, manufacture of aerogels from nitride‐based materials, particularly the emerging light‐weight carbon nitride (CN) semiconductors is rarely reported. Here, we develop a facile method based on self‐assembly to produce self‐supported CN aerogels, without using any cross‐linking agents. The combination of large surface area, incorporated functional groups and three‐dimensional (3D) network structure, endows the resulting freestanding aerogels with high photocatalytic activity for hydrogen evolution and H2O2 production under visible light irradiation. This work presents a simple colloid chemistry strategy to construct 3D CN aerogel networks that shows great potential for solar‐to‐chemical energy conversion by artificial photosynthesis.  相似文献   

10.
Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ>515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion.  相似文献   

11.
Hydrogen, the cleanest and most promising energy vector, can be produced by solar into chemical energy conversion, either by the photocatalytic direct splitting of water into H_2 and O_2, or, more efficiently,in the presence of sacrificial reagents, e.g., in the so-called photoreforming of organics. Efficient photocatalytic materials should not only be able to exploit solar radiation to produce electron–hole pairs, but also ensure enough charge separation to allow electron transfer reactions, leading to solar energy driven thermodynamically up-hill processes. Recent achievements of our research group in the development and testing of innovative TiO_2-based photocatalytic materials are presented here, together with an overview on the mechanistic aspects of water photosplitting and photoreforming of organics. Photocatalytic materials were either(i) obtained by surface modification of commercial photocatalysts, or produced(ii) in powder form by different techniques, including traditional sol gel synthesis, aiming at engineering their electronic structure, and flame spray pyrolysis starting from organic solutions of the precursors, or(iii) in integrated form, to produce photoelectrodes within devices, by radio frequency magnetron sputtering or by electrochemical growth of nanotube architectures, or photocatalytic membranes, by supersonic cluster beam deposition.  相似文献   

12.
Organic solar cells are a current research hotspot in the energy field because of their advantages of lightness,translucency,roll to roll printing and building integration.With the rapid development of small molecule acceptor materials with high-performance,the efficiency of organic solar cells has been greatly improved.Further improving the device efficiency and stability and reducing the cost of active layer materials will contribute to the industrial development of organic solar cells.As a novel type of carbon nanomaterials,carbon dots gradually show great application potential in the field of organic solar cells due to their advantages of low preparation cost,non-toxicity and excellent photoelectric performance.Firstly,the synthesis and classification of carbon dots are briefly introduced.Secondly,the photoelectric properties of carbon dots and their adjusting,including adjustable surface energy level structure,good film-forming performance and up/down conversion characteristics are summarized.Thirdly,based on these intrinsic properties,the feasibility and advantages of carbon dots used in organic solar cells are discussed.Fourthly,the application progress of carbon dots in the active layer,hole transport layer,electron transport layer,interface modification layer and down-conversion materials of organic solar cells is also reviewed.Finally,the application progress of carbon dots in organic solar cells is prospected.Several further research directions,including in-depth exploration of the controllable preparation of carbon dots and their application in the fields of interface layer and up/down conversion for improving efficiency and stability of device are pointed out.  相似文献   

13.
Recent research on stable 2D nanomaterials has led to the discovery of new materials for energy‐conversion and energy‐storage applications. A class of layered heterostructures known as misfit‐layered chalcogenides consists of well‐defined atomic layers and has previously been applied as thermoelectric materials for use as high‐temperature thermoelectric batteries. The performance of such misfit‐layered chalcogenides in electrochemical applications, specifically the hydrogen evolution reaction, is currently unexplored. Herein, a misfit‐layered chalcogenide consisting of CoO2 layers interleaved with an SrO–BiO–BiO–SrO rock‐salt block and having the formula Bi1.85Sr2Co1.85O7.7?δ is synthesized and examined for its structural and electrochemical properties. The hydrogen‐evolution performance of misfit‐layered Bi1.85Sr2Co1.85O7.7?δ, which has an overpotential of 589 mV and a Tafel slope of 51 mV per decade, demonstrates the promising potential of misfit‐layered chalcogenides as electrocatalysts instead of classical carbon.  相似文献   

14.
Photocatalytic hydrogen production from water splitting is of promising potential to resolve the energy shortage and environmental concerns. During the past decade, carbon materials have shown great ability to enhance the photocatalytic hydrogen-production performance of semiconductor photocatalysts. This review provides a comprehensive overview of carbon materials such as CNTs, graphene, C60, carbon quantum dots, carbon fibers, activated carbon, carbon black, etc. in enhancing the performance of semiconductor photocatalysts for H2 production from photocatalytic water splitting. The roles of carbon materials including supporting material, increasing adsorption and active sites, electron acceptor and transport channel, cocatalyst, photosensitization, photocatalyst, band gap narrowing effect are explicated in detail. Also, strategies for improving the photocatalytic hydrogen-production efficiency of carbon-based photocatalytic materials are discussed in terms of surface chemical functionalization of the carbon materials, doping effect of the carbon materials and interface engineering between semiconductors and carbon materials. Finally, the concluding remarks and the current challenges are highlighted with some perspectives for the future development of carbon-based photocatalytic materials.  相似文献   

15.
Two new hole‐transporting materials (HTMs), BX‐OMeTAD and BTX‐OMeTAD , based on xanthene and thioxanthene units, respectively, and bearing p‐methoxydiphenylamine peripheral groups, are presented for their use in perovskite solar cells (PSCs). The novelty of the newly designed molecules relies on the use of a single carbon‐carbon bond ‘C?C’ as a linker between the two functionalized heterocycles, which increases the flexibility of the molecule compared with the more rigid structure of the widely used HTM spiro‐OMeTAD. The new HTMs display a limited absorbance in the visible region, due to the lack of conjugation between the two molecular halves, and the chemical design used has a remarkably impact on the thermal properties when compared to spiro‐OMeTAD. BX‐OMeTAD and BTX‐OMeTAD have been tested in ([(FAPbI3)0.87(MAPbBr3)0.13]0.92[CsPbI3]0.08)‐based PSC devices exhibiting power conversion efficiencies of 14.19 and 16.55 %, respectively. The efficiencies reached, although lower than those measured for spiro‐OMeTAD (19.63 %), are good enough to consider the chemical strategy used as an interesting via to design HTMs for PSCs.  相似文献   

16.
Perovskite solar cells have gained immense interest from researchers owing to their good photophysical properties, low-cost production, and high power conversion efficiencies. Hole transport materials (HTMs) play a dominant role in enhancing the power conversion efficiencies (PCEs) and long diffusion length of holes and electrons in perovskite solar cells. In hole transport materials, modification of π-linkers has proved to be an efficient approach for enhancing the overall PCE of perovskite solar cells. In this work, π-linker modification of a recently synthesized H−Bi molecule ( R ) is achieved with novel π-linkers. After structural modifications, ten novel HTMs ( HB1–HB10 ) with a D−π−D backbone are obtained. The structure–property relationship, and optoelectronic and photovoltaic characteristics of these newly designed hole transport materials are examined comprehensively and compared with reference molecules. In addition, different geometric parameters are also examined with the assistance of density functional theory (DFT) and time-dependent DFT. All the designed molecules exhibit narrow HOMO–LUMO energy gaps (Eg=2.82–2.99 eV) compared with the R molecule (Eg=3.05 eV). The designed molecules express redshifting in their absorption spectra with low values of excitation energy, which in return offer high power conversion efficiencies. Further, density of states and molecular electrostatic potential analysis is performed to locate the different charge sites in the molecules. The reorganizational energies of holes and electrons are found to have good values, suggesting that these novel designed molecules are efficient hole transport materials for perovskite solar cells. In addition, the low binding energy values of the designed molecules (compared with R ) offer high current charge density. Finally, complex study of HB9:PC61BM is also undertaken to understand the charge transfer between the molecules of the complex. The results of all analyses advocate that these novel designed HTMs are promising candidates for the construction of future high-performance perovskite solar cells.  相似文献   

17.
Efficient charge separation and light absorption are crucial for solar energy conversion over solid photocatalysts. This paper describes the construction of Pt@TiO2@In2O3@MnOx mesoporous hollow spheres (PTIM‐MSs) for highly efficient photocatalytic oxidation. TiO2–In2O3 double‐layered shells were selectively decorated with Pt nanoparticles and MnOx on the inner and outer surfaces, respectively. The spatially separated cocatalysts drive electrons and holes near the surface to flow in opposite directions, while the thin heterogeneous shell separates the charges generated in the bulk phase. The synergy between the thin heterojunctions and the spatially separated cocatalysts can simultaneously reduce bulk and surface/subsurface recombination. In2O3 also serves as a sensitizer to enhance light absorption. The PTIM‐MSs exhibit high photocatalytic activity for both water and alcohol oxidation.  相似文献   

18.
As promising fresh-water purification devices, solar steam generation systems have attracted significant attention recently. However, in practice, the approach often suffers from a poor solar energy conversion efficiency and a low water production rate due to poor material selection and inefficient microscopic structure design. Here, we fabricate an efficient solar steam generation system by “building” polyoxometalate “nano-walls” on rice paper-derived three-dimensional porous carbon paper. In this solar steam generation system, the height of the vertically aligned CoP4Mo6 “nano-walls” range from 100 to 150 nm with thicknesses about 15 to 25 nm. Under 1 sun irradiation (1 sun = 1 kW m−2), the surface temperature increases from 29 to 50 °C in a short time with a solar thermal conversion efficiency achieving 92.8 %. The stability and durability of this solar steam generation system, which withstands fifteen cycle continuous tests, also offer good prospects. Its attractive solar energy conversion performance originates from the intense sunlight absorption and high conversion ability of the CoP4Mo6 “nano-walls”, as well as extremely promising heat localization and water transportation properties of the three-dimensional porous carbon paper. This solar steam generation system, which has produced some inspiring results, is employed for seawater desalination and for purification of water polluted with organic dyes.  相似文献   

19.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   

20.
Graphdiyne (GDY) with a direct band gap, excellent carrier mobility and uniform pores, is regarded as a promising photocatalytic material for solar energy conversion, while the research on GDY in photocatalysis is a less developed field. Herein, the distinctive structure, adjustable band gap, and electronic properties of GDY for photocatalysis is firstly summarized. The construction and progress of GDY-based photocatalysts for solar energy conversion, including H2 evolution reaction (HER), CO2 reduction reaction (CO2RR) and N2 reduction reaction (NRR) are then elaborated. At last, the challenges and perspectives in developing GDY-based photocatalysts for solar fuel production are discussed. It is anticipated that a timely Minireview will be helpful for rapid progress of GDY in solar energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号