首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dechlorination of tetrachloroethylene (PCE) over carbon-supported palladium catalyst (Pd/C) in methanol (MeOH) at mild conditions was enhanced through the addition of water to the reaction mixture. The dechlorination of PCE was accelerated by increasing the amount of water in the mixture from 0% to 50%, and beyond which the reaction slowed down, however. The presence of water in the mixture enhanced the adsorption of PCE onto the Pd/C but compromised the solubility of H2 gas in the mixture. It was also noted that the selectivity of the HDC reaction was improved with the increase in the amount of water in the mixture as the formation of trichloroethylene (TCE) was completely eliminated when the HDC was carried out in mixtures with 50% water or more. Other chlorinated intermediates were not detected in all the reactions.  相似文献   

2.
Catalytic Dechlorination of Chlorobenzene in Water by Pd/Fe System   总被引:9,自引:0,他引:9  
Chlorobenzene was dechlorinated by Pd/Fe bimetallic system in water through catalytic reduction. The dechlorination rate increases with increase of bulk loading of Pd due to the increase of both the surface loading of the Pd and the total surface area. For conditions with 0.005% Pd/Fe, 45% dechlorination efficiency was achieved within 5 h. The dechlorinated reaction is believed to take place on the bimetal surface in a pseudo-first-order reaction, with the rate constant being 0.0043 min^-1.  相似文献   

3.
The kinetics for the complete combustion of methane was studied on a Pd foil in the regions where the oxide and then the metal were the bulk stable phases. The use of a model catalyst allowed the kinetics to be studied at higher temperatures than are possible on supported catalysts since heat and mass transport limitations could be avoided for this nonporous model catalyst. For all reaction conditions, CH4 and O2 reaction orders remained the same at about 0.7 and 0, respectively. With PdO as the stable phase, the water reaction order increased from -1 to 0 and the apparent activation energy (Ea) decreased from 125 to 30 kJ mol(-1) as the reaction temperature increased from 600 to 880 K. We propose that as the temperature is increased water desorbs from the sites responsible for combustion and as a result water inhibition and Ea decrease. To investigate the rate of reaction on Pd versus PdO, the rates were measured around the Pd-PdO transition temperature. The turnover rate decreased from 3.0 s(-1) to 0.3 s(-1) at the transition temperature (907 K with 1.5 Torr O2 and 0.30 Torr CH4) when PdO decomposed to Pd metal, showing that PdO was more active than Pd metal for methane oxidation at this temperature. The reaction orders for Pd metal in the range of 933-1003 K were 0.7, 0, and 0 for methane, water, and O2, respectively, with an apparent activation energy of 125 kJ mol(-1). Thus, the turnover rate and Ea changes suggest that the reaction mechanism for methane oxidation on Pd is different from the one on PdO.  相似文献   

4.
Palladium(II)-catalyzed oxidative reaction of tert-cyclobutanols involving the cleavage of a C-C bond via beta-carbon elimination under atmospheric pressure of oxygen is described. An alkylpalladium intermediate produced by beta-carbon elimination from a Pd(II) alcoholate gives a variety of products, depending on the substituents on the cyclobutane ring, in which reactions such as dehydrogenative ring opening, ring expansion and ring contraction are involved. For some substrates, the addition of a catalytic amount of ethyl acrylate dramatically accelerates the reaction. In all cases, the dehydrogenative products are obtained and the Pd(II)-hydride species produced at the final stage can be converted again to active Pd(II) species by molecular oxygen.  相似文献   

5.
The high-temperature complete oxidation of methane over metallic monolith-supported zeolite catalysts containing isolated Mn, Co, and Pd ions was studied. The reaction involves heterogeneous and heterogeneous-homogeneous catalytic processes. The ratio between these processes depends on the temperature, feed rate, and the amount of catalyst charged in the reactor. In the heterogeneous catalytic process, the activity of the catalysts supported on the Fe—Cr—Al monolithic alloy decreases in the series Pd > Mn > Co > Fe—Cr—Al monolith and the reaction rate uniformly increases with increasing contact time. In the heterogeneous-homogeneous process, the reaction rate drastically increases and a 100% conversion of methane to CO2 can be achieved by minor variations of the contact time. In this case, methane oxidation depends not only on the catalyst chemical composition but also on its external surface area and the reaction volume.  相似文献   

6.
近年来,随着环境问题的日益突出,含卤有机化合物作为一类主要的环境污染物,其加氢脱卤反应的研究越来越多地受到人们的关注.  相似文献   

7.
纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用   总被引:15,自引:0,他引:15  
 利用化学沉淀法制备了纳米级Fe和纳米级Pd/Fe双金属催化剂,研究了它们对2,4-二氯苯酚(2,4-DCP)还原脱氯的催化性能. 结果表明,纳米级颗粒具有较高的比表面积和表面反应活性,其BET比表面积可达12.4 m2/g,当Pd/Fe用量为6 g/L时,2,4-DCP脱氯率达到90%以上. 脱氯效率与pH值、温度、钯含量和Pd/Fe投加量等因素有关. 2,4-DCP在脱氯过程中先生成2-氯苯酚和4-氯苯酚,最终生成苯酚,而少量的2,4-DCP可直接降解成苯酚.  相似文献   

8.
Present studies concentrated on the preparation, characterization, and electroactivity of palladium–polypyrrole (Pd/PPY) catalysts for oxygen reduction reaction. In particular, the effect of Nafion ionomer on their electroactivity was evaluated. In all catalysts prepared by “water-in-oil” microemulsion method, the Pd nanoparticles of ca. 7 nm in size appeared regardless of the Pd content (ranging from 2 to 20 wt.%). For comparison, carbon black-supported (Vulcan XC-72) catalyst (20 wt.% Pd) was also synthesized. Coating of the Pd/PPY samples with Nafion ionomer reduced their surface area and porosity. Chemical interaction due to Nafion acid functionalities affected the N-state of pyrrole as well as electron state of Pd in the Pd/PPY catalysts. As a result, the contribution of more oxidized palladium (Pdδ+) increased. These interactions played an essential role in the electroactivity of Pd/PPY for oxygen reduction reaction. The increased amount of Nafion relative to that of PPY reduced limiting current density whereas the half-wave potential shifted to a more positive value and the fraction of hydrogen peroxide remarkably decreased.  相似文献   

9.
The homocoupling reaction between potassium aryl trifluoroborates containing different functionalities promoted by a catalytic amount of Pd(OAc)2 is described. The methodology uses water as a solvent under aerobic conditions to give the corresponding biaryl compounds in good yields.  相似文献   

10.
刘成  谭蓉  银董红  喻宁亚  周裕旭 《催化学报》2010,31(11):1369-1373
 研究了 PMO-SBA-15 材料负载的金属钯纳米粒子 (Pd/PMO-SBA-15) 在水相中催化苯甲醇选择氧化制苯甲醛的反应. 考察了纳米粒子种类、氧化剂用量、反应时间和反应温度等对苯甲醇转化率及苯甲醛选择性的影响. 结果表明, 以水为溶剂, 以 H2O2 (30%) 为氧化剂时, 可得到较高的苯甲醇转化率和苯甲醛选择性. 当以 0.05 g 的 2%Pd/PMO-SBA-15 为催化剂, H2O2 用量为 1.5 ml, 反应温度为 80 oC, 反应 4 h 时, 苯甲醇转化率和苯甲醛选择性分别达到 97.1% 和 100.0%. 对该催化体系的重复使用性能进行了考察. 结果发现, 随着使用次数的增加, 苯甲醇转化率有所下降, 但苯甲醛选择性保持不变.  相似文献   

11.
Pd(II)-exchanged NaY zeolite showed high activity in the Suzuki cross-coupling reactions of aryl bromides and iodides without added ligands. The DMF:water ratio, and the type and amount of base were found to be critical for the efficiency of the reaction. The catalyst is reusable after regeneration.  相似文献   

12.
氧化铈对Pd/Al2O3表面上CO氧化性能的影响   总被引:7,自引:0,他引:7  
采用TPD-MS及TPSR-MS技术研究了添加CeO2对Pd/Al2O3催化剂上CO脱附、表面反应及表面氧脱附等性能的影响,考察了不同含氧量的气氛下CO的氧化活性,结果表明,Pd-Ce间的相互作用有利于各自原子上表面氧的吸脱附及CO的表面反应,并发现CO2脱附量大小及峰温次序与对CO的催化氧化活性有一致的对应关系。  相似文献   

13.
An efficient and straightforward procedure for the Suzuki–Miyaura cross-coupling reaction was studied by using aryldiazonium silica sulfates and sodium tetraphenylborate in the presence of a catalytic amount of Pd(OAc)2. These reactions were carried out in water at room temperature without using additional ligands.  相似文献   

14.
Methanol steam reforming, catalyzed by Pd/ZnO (PdZn alloy), is a potential source of hydrogen for on-board fuel cells. CO has been reported to be a minor side product of methanol decomposition that occurs in parallel to methanol steam reforming on PdZn catalysts. However, fuel cells currently used in vehicles are very sensitive to CO poisoning. To contribute to the understanding of pertinent reaction mechanisms, we employed density functional slab model calculations to study the decomposition of formaldehyde, a key intermediate in methanol decomposition and steam reforming reactions, on planar surfaces of Pd, Cu, and PdZn as well as on a stepped surface of PdZn. The calculated activation energies indicate that dehydrogenation of formaldehyde is favorable on Pd(111), but unfavorable on Cu(111) and PdZn(111). On the stepped PdZn(221) surface, the dehydrogenation process was calculated to be more competitive to formaldehyde desorption than on PdZn(111). Thus, we ascribe the experimentally observed small amount of CO, formed during steam reforming of methanol on the Pd/ZnO catalyst, to occur at metallic Pd species of the catalyst or at defect sites of PdZn alloy.  相似文献   

15.
A variety of palladium on activated carbon catalysts differing in Pd dispersion, Pd distribution, Pd oxidation state, and water content were tested in Heck reactions of aryl bromides with olefins. The optimization of the catalyst (structure-activity relationship) and reaction conditions (temperature, solvent, base, and Pd loading) allowed Pd/C catalysts with very high activity for Heck reactions of unactivated bromobenzene (turnover number (TON) approximately 18000, turnover frequency (TOF) up to 9000, Pd concentrations down to 0.005 mol %) to be developed. High Pd dispersion, low degree of reduction, sufficient content of water, and uniform Pd impregnation are criteria for the most active system. The catalysts combine high activity and selectivity under ambient conditions (air and moisture), easy separation (filtration), and quantitative recovery of palladium. Determination of Pd in solution after and during the reaction, and catalyst characterization before and after the reaction (transmission electron microscopy (TEM), X-ray diffraction (XRD)), indicate dissolution/reprecipitation of palladium during the reaction. The Pd concentration in solution is highest at the beginning of the reaction and is a minimum (< 1 ppm) at the end of the reaction. Palladium leaching correlates significantly with the reaction parameters.  相似文献   

16.
Pd(DPPF)Cl2 is shown to be an extremely active catalyst for the Suzuki reaction of aryl bromides in water. This green procedure provides biaryls in excellent yields and high turnover numbers (TONs) (TONs up to 870,000 for the reaction of 1-bromo-4-nitrobenzene and phenylboronic acid). A small amount of PEG-2000 also allows the recycling of the palladium catalyst for three times without any significant loss of catalytic activity.  相似文献   

17.
The pathway of formic acid electrooxidation strongly depends on the amount of three neighbouring Pt or Pd atoms in the surface of Pd- or Pt-based catalysts. Here, Pt decorated Pd/C nanoparticles (the optimal atomic ratio, Pd?:?Pt = 20?:?1) were designed and then synthesized through a facile galvanic replacement reaction where the amount of three neighbouring Pt or Pd atoms markedly decreased. As a result, discontinuous Pd and Pt atoms suppressed CO formation and exhibited unprecedented catalytic activity and stability toward formic acid electrooxidation while the cost was almost the same as that of Pd/C.  相似文献   

18.
Triangular Ag–Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag‐Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag–Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag–Pd composition as well as the hollow‐framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems.  相似文献   

19.
In the present work, an ab initio study on hydration (a metal-ligand replacement by water molecule or OH- group) of cis- and transplatin and their palladium analogs was performed within a neutral pseudomolecule approach (e.g., metal-complex+water as reactant complex). Subsequent replacement of the second ligand was considered. Optimizations were performed at the MP2/6-31+G(d) level with single-point energy evaluation using the CCSD(T)/6-31++G(d,p) approach. For the obtained structures of reactants, transition states (TS's), and products, both thermodynamic (reaction energies and Gibbs energies) and kinetic (rate constants) characteristics were estimated. It was found that all the hydration processes are mildly endothermic reactions-in the first step they require 8.7 and 10.2 kcal/mol for ammonium and chloride replacement in cisplatin and 13.8 and 17.8 kcal/mol in the transplatin case, respectively. Corresponding energies for cispalladium amount to 5.2 and 9.8 kcal/mol, and 11.0 and 17.7 kcal/mol for transpalladium. Based on vibrational analyses at MP2/6-31+G(d) level, transition state theory rate constants were computed for all the hydration reactions. A qualitative agreement between the predicted and known experimental data was achieved. It was also found that the close similarities in reaction thermodynamics of both Pd(II) and Pt(II) complexes (average difference for all the hydration reactions are approximately 1.8 kcal/mol) do not correspond to the TS characteristics. The TS energies for examined Pd(II) complexes are about 9.7 kcal/mol lower in comparison with the Pt analogs. This leads to 10(6) times faster reaction course in the Pd cases. This is by 1 or 2 orders of magnitude more than the results based on experimental measurements.  相似文献   

20.
The reaction of carbon-tethered acetylenic aldehydes with alcohols in the presence of a catalytic amount of Pd(OAc)2 in 1,4-dioxane at room temperature gave the 5- or 6-membered acetal products in high yields. The 13C NMR studies suggested that a Pd(II) catalyst exhibited dual roles in the present reaction; the attack of ROH to aldehyde is catalyzed by Lewis acidic Pd(OAc)2, and the nucleophilic oxygen of the resulting hemiacetal reacts with alkyne complexed by Pd(II), giving the alkenyl ethers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号