首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Apoptosis is described as a mechanism of cell death occurring after adequate cellular harm. Deregulation of apoptosis occurs in many human conditions such as autoimmune disorders, ischemic damage, neurodegenerative diseases and different cancer types. Information relating miRNAs to cancer is increasing. miRNAs can affect development of cancer via many different pathways, including apoptosis. Polymorphisms in miRNA genes or miRNA target sites (miRSNPs) can change miRNA activity. Although polymorphisms in miRNA genes are very uncommon, SNPs in miRNA-binding sites of target genes are quite common. Many researches have revealed that SNPs in miRNA target sites improve or decrease the efficacy of the interaction between miRNAs and their target genes. Our aim was to specify miRSNPs on CASP3 gene (caspase-3) and SNPs in miRNA genes targeting 5′UTR and coding exons of CASP3, and evaluate the effect of these miRSNPs and SNPs of miRNA genes with respect to apoptosis. We detected 141 different miRNA binding sites (126 different miRNAs) and 7 different SNPs in binding sites of miRNA in 5′UTR and CDS of CASP3 gene. Intriguingly, miR-339-3p’s binding site on CASP3 has a SNP (rs35372903, G/A) on CASP3 5′UTR and its genomic sequence has a SNP (rs565188493, G/A) at the same nucleotide with rs35372903. Also, miR-339-3p has two other SNPs (rs373011663, C/T rs72631820, A/G) of which the first is positioned at the binding site. Here, miRSNP (rs35372903) at CASP3 5′UTR and SNP (rs565188493) at miR-339-3p genomic sequence cross-matches at the same site of binding region. Besides, miR-339-3p targets many apoptosis related genes (ZNF346, TAOK2, PIM2, HIP1, BBC3, TNFRSF25, CLCF1, IHPK2, NOL3) although it had no apoptosis related interaction proven before. This means that miR-339-3p may also have a critical effect on apoptosis via different pathways other than caspase-3. Hence, we can deduce that this is the first study demonstrating a powerful association between miR-339-3p and apoptosis upon computational analysis.  相似文献   

6.
7.
8.
9.
10.
BackgroundObstructive sleep apnoea (OSA) is a prevalent form of sleep disordered breathing which results in sleep fragmentation and deprivation. Obesity and cardiovascular disorders are the major risk factors associated with OSA. Molecular analysis of the factors associated with OSA could demarcate the clinical analysis pattern in a population.ObjectiveThis study pertains to in-silico analyses of miRNA and their gene targets with validation for their potential role in OSA as putative biomarker candidates.MethodsmiRDB, TargetScan and miRanda databases were used to identify targets of miR-27 and let-7 that have documented role in OSA and co-related obesity and cardiovascular disorders. Quantitative PCR was used to analyze expression pattern of miR-27 and let-7 in obese and non-obese OSA patient cohorts with respective controls. In-silico analysis was done using PatchDoc to obtain atomic contact energy (ACE) scores that indicated the docked gene targets to the predicted miRNA structures. The docked structures were analysed using Maestro Suite 11 for the hydrogen and aromatic interactions.ResultsDownregulation of miR-27 and let-7 in OSA compared to controls was observed. In-silico data analysis was performed for gene targets (TGFBR1, TGFBR2, SMAD2, SMAD4, CRY2 and CNR1) of the selected miRNAs (miR-27 and let-7). Among all, CNR1 and CRY2 were found to be better targets for miR-27 and let-7 respectively as per ACE scores, ROC scores and expression fold change in OSA.ConclusionOur study gives insights to the expression profiling of miR-27 and let-7 and explore a set of potential target genes (CNR1 and CRY2) of these two miRNAs for a promising clinical relevance in OSA.  相似文献   

11.
12.
BackgroundExogenous microRNAs (miRNAs) enter the human body through food, and their effects on metabolic processes can be considerable. It is important to determine which miRNAs from plants affect the expression of human genes and the extent of their influence.MethodThe binding sites of 738Oryza sativa miRNAs (osa-miRNAs) that interact with 17 508 mRNAs of human genes were determined using the MirTarget program.ResultThe characteristics of the binding of 46 single osa-miRNAs to 86 mRNAs of human genes with a value of free energy (ΔG) interaction equal 94%–100% from maximum ΔG were established. The findings showed that osa-miR2102-5p, osa-miR5075-3p, osa-miR2097-5p, osa-miR2919 targeted the largest number of genes at 38, 36, 23, 19 sites, respectively. mRNAs of 86 human genes were identified as targets for 93 osa-miRNAs of all family osa-miRNAs with ΔG values equal 94%–98% from maximum ΔG. Each miRNA of the osa-miR156-5p, osa-miR164-5p, osa-miR168-5p, osa-miR395-3p, osa-miR396-3p, osa-miR396-5p, osa-miR444-3p, osa-miR529-3p, osa-miR1846-3p, osa-miR2907-3p families had binding sites in mRNAs of several human target genes. The binding sites of osa-miRNAs in mRNAs of the target genes for each family of osa-miRNAs were conserved when compared to flanking nucleotide sequences.ConclusionTarget mRNA human genes of osa-miRNAs are also candidate genes of cancer, cardiovascular and neurodegenerative diseases.  相似文献   

13.
14.
MicroRNAs (miRNAs) are important nonprotein-coding genes involved in almost all biological processes during biotic and abiotic stresses in plants. To investigate the miRNA-mediated plant response to drought stress, two drought-tolerant (C-306 and NI-5439) and two drought-sensitive (HUW-468 and WL-711) wheat genotypes were exposed to 25 % PEG 6000 for 1, 12 and 24 h. Temporal expression patterns of 12 drought-responsive miRNAs and their corresponding nine targets were monitored by quantitative real-time PCR (qRT-PCR). The results showed differential expression of miRNAs and their targets with varying degree of upregulation and downregulation in drought-sensitive genotypes. Likewise, in drought-tolerant wheat genotypes, maximum accumulation of miR393a and miR397a was observed at 1 h of stress. In addition, nearly perfect negative correlation was observed in four miRNA and target pairs (miR164-NAC, miR168a-AGO, miR398-SOD and miR159a-MYB) across all the temporal period studied which could be a major player during drought response in wheat. We, for the first time, validated the presence of miR529a and miR1029 in wheat. These findings gives a clue for temporal and variety-specific differential regulation of miRNAs and their targets in wheat in response to osmotic shock and could help in defining the potential roles of miRNAs in plant adaptation to osmotic stress in future.  相似文献   

15.
For studies on functional genomics, small RNAs, especially microRNAs (miRNAs), have emerged as a hot topic due to their importance in cellular and developmental processes. Identification of insect miRNAs largely depends on the availability of genomic sequences in the public domain. The large milkweed bug, Oncopeltus fasciatus (Dallas) is a hemimetabolous insect which has become a model hemipteran system for various molecular studies. In this study, we identified 96 candidate mature miRNAs from O. fasciatus genome using a blast search with the previously reported animal miRNAs. The secondary structure of predicted miRNA sequences was determined online using “mfold” web server and verified by calculating the minimal free energy index (MFEI). Six miRNAs let-7e, miR-133c, miR-219b, mir-466d, mir-669f, and mir-669l are reported for the first time in Insecta. Comparison of O. fasciatus mir-2 and mir-71 family clusters to those of diverse insect species showed that they are highly conserved. The phylogenetic analysis of miRNAs revealed the evolutionary relationship of conserved miRNAs of O. fasciatus with other insect species. Using a classical rule-based algorithm method, we predicted the possible targets of the new miRNAs. Our study not only identified the list of miRNAs in O. fasciatus but also provides a basic platform for developing novel pest management strategies based on artificial miRNAs.  相似文献   

16.
Although thousands of microRNAs (miRNAs) have been identified in recent experimental efforts, it remains a challenge to explore their specific biological functions through molecular biological experiments. Since those members from same family share same or similar biological functions, classifying new miRNAs into their corresponding families will be helpful for their further functional analysis. In this study, we initially built a vector space by characterizing the features from miRNA sequences and structures according to their miRBase family organizations. Then we further assigned miRNAs into its specific miRNA families by developing a novel genes discriminant analysis (GDA) approach in this study. As can be seen from the results of new families from GDA, in each of these new families, there was a high degree of similarity among all members of nucleotide sequences. At the same time, we employed 10-fold cross-validation machine learning to achieve the accuracy rates of 68.68%, 80.74%, and 83.65% respectively for the original miRNA families with no less than two, three, and four members. The encouraging results suggested that the proposed GDA could not only provide a support in identifying new miRNAs’ families, but also contributing to predicting their biological functions.  相似文献   

17.
Several computational approaches employ the high complementarity of plant miRNAs to target mRNAs as a filter to recognize miRNA. Numerous non-conserved miRNAs are known with more recent evolutionary origin as a result of target gene duplication events. We present here a computational model with knowledge inputs from reported non-conserved mature miRNAs of Oryza sativa (rice). Sequence- and structure-based approaches were used to retrieve miRNA features based on rice Argonaute protein and develop a multiple linear regression (MLR) model (r2 = 0.996, q2cv = 0.989) which scored mature miRNAs as predicted by the MaturePred program. The model was validated by scoring test set (q2 = 0.990) and computationally predicted mature miRNAs as external test set (q2test = 0.895). This strategy successfully enhanced the confidence of retrieving most probable non-conserved miRNAs from the rice genome. We anticipate that this computational model would recognize unknown non-conserved miRNA candidates and nurture the current mechanistic understanding of miRNA sorting to unveil the role of non-conserved miRNAs in gene silencing.  相似文献   

18.
Prostate cancer (PCa) is the most frequent type of cancer in men. Hypericum perforatum (H. Perforatum) extract (HPE) administration provides remarkable decrease of PCa development. H. perforatum contains 7 conserved miRNAs (Hyp-miR-156a, Hyp-miR-156b, Hyp-miR-166, Hyp-miR-390, Hyp-miR-394, Hyp-miR-396 and Hyp-miR-414) with different targets. In this study, we aimed to investigate cross-kingdom gene regulation via miRNAs of H. perforatum flower dietetically absorbed in manner of an in silico approach to define potential biomarkers for PCa. psRNATarget database was used to find human genes targeted by 7 pre-defined H. perforatum miRNAs. We defined the mostly affected gene families from these miRNAs as ZNF, TMEM, SLC and FAM gene families. GeneMANIA database was used to define the most affected genes (TMEM41B and SLC4A7) from these 7 miRNAs. cBioPortal database was used to define alteration frequencies of TMEM41B and SLC4A7 on different types of PCa and to measure the mutual interaction potency and significance of co-occurence in PCa. This analysis showed that neuroendocrine prostate cancer (NEPC) had the highest total mutation frequency (22%) of TMEM41B and SLC4A7 genes. Also, TMEM41B and SLC4A7 genes had an average 2.1% pathway change potential among all different types of PCa. Moreover, TMEM41B and SLC4A7 gene pair was found significantly co-occurrent in PCa (p < 0.001). Finally, via GEPIA database, we used Spearman correlation analysis to measure the correlation degree of TMEM41B and SLC4A7 genes in PCa and found their significant correlation with PCa (p = 1.2 × 10−12, R = 0.28). All in all, it was proved in silico and supported with previously known clinical data that SLC4A7 and TMEM41B potentially have a significant and critical tumor suppressive role for PCa, and show this effect combinatorily working together. This is the first study correlating SLC4A7 and TMEM41B with PCa significantly.  相似文献   

19.
MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in regulating gene expression in animals, plants, and viruses, which involves in biological processes including development, cancer, immunity, and host–microorganism interactions. In this present study, we have used the computational approach to identify potent miRNAs involved in Anopheles gambiae immune response. Analysis of 217,261 A. gambiae ESTs and further study of RNA folding revealed six new miRNAs. The minimum free energy of the predicted miRNAs ranged from ?27.2 to ?62.63 kcal/mol with an average of ?49.38 kcal/mol. While its A + U % ranges from 50 to 65 % with an average value of 57.37 %. Phylogenetic analysis of the predicted miRNAs revealed that aga-miR-277 was evolutionary highly conserved with more similarity with other mosquito species. Observing further the target identification of the predicted miRNA, it was noticed that the aga-miR-2304 and aga-miR-2390 are involved in modulation of immune response by targeting the gene encoding suppressin and protein prophenoloxidase. Further detailed studies of these miRNAs will help in revealing its function in modulation of A. gambiae immune response with respect to its parasite.  相似文献   

20.
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Aberrant expression of genes in mTOR pathway and their targeting miRNAs plays an important role in TNBC. The aim of this study was to determine the expression of mTOR and S6K1 and their targeting miRNAs in breast cancer cell lines and clinical samples. miRNAs targeting 3′-UTR of mTOR and S6K1 mRNAs were predicted using bioinformatic algorithms. MDA-MB-231, MCF-7, and MCF-10A as well as 20 TNBC samples were analyzed for gene and miRNA expression using quantitative real-time PCR (RT-qPCR). A receiver operating characteristic (ROC) curve analysis was performed for evaluation of candidate miRNAs as diagnostic biomarkers. miR-96 and miR-557 targeting mTOR and S6K1 mRNAs, respectively, were selected, and miR-3182 was selected as the miRNA targeting both genes. The miRNAs were down-regulated in cell lines, while their target mRNAs were up-regulated. Similar findings were observed in clinical samples. The ROC curve analysis revealed decline in expression of these miRNAs. We suggest that miR-96, miR-557, and miR-3182 can be used as inhibitory agents for mTOR and S6K1 in TNBC-targeted therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号