首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Isomeric 5‐bromo‐3‐nitrosalicylaldehyde phenylhydrazone and 3‐bromo‐5‐nitrosalicylaldehyde phenylhydrazone, C13H10BrN3O3, both crystallize with two molecules in the asymmetric unit. In both isomers, an intramolecular O—H...N hydrogen bond links the hydroxy group and the imine N atom. In the 5‐bromo‐3‐nitro isomer, there are two independent N—H...O hydrogen‐bonded chains, each molecule in the asymmetric unit forming its own chain. These chains are then linked to form a three‐dimensional framework by a combination of weak C—H...O, C—H...Br, C—H...π and π–π stacking interactions. In the 3‐bromo‐5‐nitro isomer, N—H...O hydrogen bonds link the independent molecules alternately into a zigzag chain, which is reinforced by a weak C—H...O interaction. Individual chains are linked by a C—H...Br interaction and a three‐dimensional framework is generated by π–π stacking interactions.  相似文献   

2.
The nature of intermolecular interactions between halogen atoms, X...X (X = Cl, Br, I), continues to be of topical interest because these interactions may be used as design elements in crystal engineering. Hexahalogenated benzenes (C6Cl(6-n)Br(n), C6Cl(6-n)I(n), C6Br(6-n)I(n)) crystallise in two main packing modes, which take the monoclinic space group P2(1)/n and the triclinic space group P1. The former, which is isostructural to C6Cl6, is more common. For molecules that lack inversion symmetry, adoption of this monoclinic structure would necessarily lead to crystallographic disorder. In C6Cl6, the planar molecules form Cl...Cl contacts and also pi...pi stacking interactions. When crystals of C6Cl6 are compressed mechanically along their needle length, that is, [010], a bending deformation takes place, because of the stronger interactions in the stacking direction. Further compression propagates consecutively in a snakelike motion through the crystal, similar to what has been suggested for the motion of dislocations. The bending of C6Cl6 crystals is related to the weakness of the Cl...Cl interactions compared with the stronger pi...pi stacking interactions. The triclinic packing is less common and is restricted to molecules that have a symmetrical (1,3,5- and 2,4,6-) halogen substitution pattern. This packing type is characterised by specific, polarisation-induced X...X interactions that result in threefold-symmetrical X3 synthons, especially when X = I; this leads to a layered pseudohexagonal structure in which successive planar layers are inversion related and stacked so that bumps in one layer fit into the hollows of the next in a space-filling manner. The triclinic crystals shear on application of a mechanical stress only along the plane of deformation. This shearing arises from the sliding of layers against one another. Nonspecificity of the weak interlayer interactions here is demonstrated by the structure of twinned crystals of these compounds. One of the compounds studied (1,3,5-tribromo-2,4,6-triiodobenzene) is dimorphic, adopting both the monoclinic and triclinic structures, and the reasons for polymorphism are suggested. To summarise, both chemical and geometrical models need to be considered for X...X interactions in hexahalogenated benzenes. The X...X interactions in the monoclinic group are nonspecific, whereas in the triclinic group some X...X interactions are anisotropic, chemically specific and crystal-structure directing.  相似文献   

3.
Nonmesogenic 2,3,12,13‐tetrabromo‐5,10,15,20‐tetrakis(4‐butoxyphenyl)porphyrin crystallizes as the title 1,2‐dichloroethane solvate, C60H58Br4N4O4·C2H4Cl2. The porphyrin ring shows a nonplanar conformation, with an average mean plane displacement of the β‐pyrrole C atoms from the 24‐atom (C20N4) core of ±0.50 (3) Å. The 1,2‐dichloroethane solvent is incorporated between the porphyrin units and induces the formation of one‐dimensional chains via interhalogen Cl...Br and butyl–aryl C—H...π interactions. These chains are oriented along the unit‐cell a axis, with the macrocyclic ring planes lying almost parallel to the (010) plane. The chains are arranged in an offset fashion by aligning the butoxy chains approximately above or below the faces of the adjacent porphyrin core, resulting in decreased interporphyrin π–π interactions, and they are held together by weak intermolecular (C—Br...π, C—H...π and C—H...Br) interactions. The nonplanar geometry of the macrocyclic ring is probably due to the weak interporphyrin interactions induced by the solvent molecule and the peripheral butoxy groups. The nonplanarity of the mesogens could influence the mesogenic behaviour differently relative to planar porphyrin mesogens.  相似文献   

4.
Crystal structures are presented for two members of the homologous series of 1,2‐dibromo‐4,5‐dialkoxybenzenes, viz. those with decyloxy and hexadecyloxy substituents, namely 1,2‐dibromo‐4,5‐bis(decyloxy)benzene, C26H44Br2O2, (II), and 1,2‐dibromo‐4,5‐bis(hexadecyloxy)benzene, C38H68Br2O2, (III). The relative influences which halogen bonding, π–π stacking and van der Waals interactions have on these structures are analysed and the results compared with those already found for the lightest homologue, 1,2‐dibromo‐4,5‐dimethoxybenzene, (I) [Cukiernik, Zelcer, Garland & Baggio (2008). Acta Cryst. C 64 , o604–o608]. The results confirm that the prevalent interactions stabilizing the structures of (II) and (III) are van der Waals contacts between the aliphatic chains. In the case of (II), weak halogen C—Br...(Br—C)′ interactions are also present and contribute to the stability of the structure. In the case of (III), van der Waals interactions between the aliphatic chains are almost exclusive, weaker C—Br...π interactions being the only additional interactions detected. The results are in line with commonly accepted models concerning trends in crystal stability along a homologous series (as measured by their melting points), but the earlier report for n = 1, and the present report for n = 10 and 16, are among the few providing single‐crystal information validating the hypothesis.  相似文献   

5.
Triangular halogen trimers (RX)3, where X = Br, I and R represents H, H3C, H2FC, HF2C, F3C, CH2=CH, CH[triple bond]C, and Ph, have been investigated using the density functional theory in the Perdew, Burke, and Ernzerhof method. We report herein the optimized geometries of the stable structures, their vibrational frequencies, and binding energies with the two- and three-body terms. All trimer structures possess a cyclic array of halogen atoms in the type II approach by virtue of the nonspherical atomic charge distribution around the halogens. The Br...Br interactions in trimers are very weak, whereas the I...I interactions in trimers are relatively stronger. While all bromine trimers and most of iodine trimers are predicted to be noncooperative, three of iodine trimers show weak cooperativity. The analysis of vibration modes reveals that all halogen trimers exhibit no especially remarkable frequency shifts. It is also shown that the electrostatic contribution plays a major role in the halogen...halogen interactions in halogen trimers. In contrast to bromine trimers, the relative contribution of charge-transfer component to the halogen...halogen interactions becomes more important for iodine trimers.  相似文献   

6.
An interesting case of `halogen‐bonding‐promoted' crystal structure architecture is presented. The two title compounds, C8H8Br2O2 and C8H8I2O2, have almost indistinguishable molecular structures but very different spatial organization, and this is mainly due to differences in the halogen‐bonding interactions in which the different species present, i.e. Br and I, take part. The dibromo structure exhibits a π‐bonded columnar array involving all four independent molecules in the asymmetric unit, with intercolumnar interactions governed by C—Br...Br—C links and with no C—Br...O/N interactions present. In the diiodo structure, instead, the C—I...O synthon prevails, defining linear chains, in turn interlinked by C—I...I—C interactions.  相似文献   

7.
A new substance, cis‐amminedibromido(2‐methylpyridine‐κN)platinum(II), cis‐[PtBr2(C6H7N)(NH3)], which is a potential platinum‐based antineoplastic agent for the treatment of patients with solid tumors, has been synthesized and structurally characterized. There is one molecule in the asymmetric unit and molecules are linked via two symmetry‐independent N—H...Br hydrogen bonds into zigzag chains running parallel to the c axis. C—H...Br hydrogen bonds crosslink these chains to give a layer parallel to (010). N—H...Br hydrogen bonds and π–π stacking interactions between pairs of pyridine rings stack the layers along b.  相似文献   

8.
Yellowish elongated crystals of the two new compounds Pb6LaO7Br (1) and Pb6LaO7Cl (2) have been obtained by the method of solid-state reactions. Both structures can be described in the terms of oxo-centered tetrahedra. The structures of 1 and 2 consist of [O7Pb6La]+ chains that are built from oxocentered OA4 (A = Pb, La) tetrahedra. The halogen ions connect the chains through weak Pb-X bonds. An arrangement of eight OA4 tetrahedra that all share the same central La atom forms a [O8Pb10La3]13+ cluster. The clusters are linked into chains, and additional OPb4 tetrahedra are attached to the chains. Incorporation of Cl atoms instead of Br atoms into the structure causes a lowering of the symmetry from Cmcm to C2/m.  相似文献   

9.
The preparation of three isonitrile complexes (CyNC)Au(I)Cl, (CyNC)Au(I)Br, and (CyNC)Au(I)I, along with their structural and spectral characterization, are reported. X-ray crystal structures reveal that these crystallize in the same space group and have closely related structures. The structures involve pleated chains of linear, two-coordinate monomers that are arranged in a head-tail fashion. However, these chains vary significantly in the degree of aurophilic interactions among the individual molecules. Thus, (CyNC)Au(I)Cl forms infinite chains with alternating Au...Au distances of 3.3894(7) and 3.5816(7) A. Within the chains of (CyNC)Au(I)Br, however, the alternation of Au.Au distances is more pronounced so that there are dimers, with an Au.Au distance of 3.4864(9) A, and neighboring gold centers at 3.7036(9) A. In (CyNC)Au(I)I, the gold-gold contacts do not lie within the range of significant aurophilic bonding. The closest Au...Au distance is 3.7182(11) A while every other Au...Au distance is 3.9304(12) A. The steric factor of the X ligand and dipole-dipole interactions between the antiparallel complexes is much more significant than aurophilic interactions in governing the self-association of the complexes in this series. The colorless crystals of each solid display an orange luminescence band with a strikingly large Stokes' shift ( approximately 21000 cm(-)(1), 2.6 eV). However, considerable care had to be taken to ensure that the crystals used for the study of the luminescence were free of a surface impurity that produced a turquoise-green luminescence in (CyNC)Au(I)Cl. The diffuse reflectance spectra for the solids show a similar three-band pattern in the 200-330 nm range.  相似文献   

10.
The achiral meso form of the title compound, C18H38N2O42+·2Cl, crystallizes to form undulating layers consisting of chains linked via weak hydroxyalkyl C—H...Cl contacts. The chains are characterized by centrosymmetric hydrogen‐bonded dimers generated via N—H...Cl and hydroxycycloalkyl O—H...Cl interactions. transN‐Alkyl bridges subdivide the chains into hydrophilic segments flanked by hydrophobic cycloalkyl stacks along [001].  相似文献   

11.
Ethyl 1‐ethyl‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C14H14INO3, (I), and ethyl 1‐cyclopropyl‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C15H14INO3, (II), have isomorphous crystal structures, while ethyl 1‐dimethylamino‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C14H15IN2O3, (III), possesses a different solid‐state supramolecular architecture. In all three structures, O...I halogen‐bonding interactions connect the quinolone molecules into infinite chains parallel to the unique crystallographic b axis. In (I) and (II), these molecular chains are arranged in (101) layers, viaπ–π stacking and C—H...π interactions, and these layers are then interlinked by C—H...O interactions. The structural fragments involved in the C—H...O interactions differ between (I) and (II), accounting for the observed difference in planarity of the quinolone moieties in the two isomorphous structures. In (III), C—H...O and C—H...π interactions form (100) molecular layers, which are crosslinked by O...I and C—H...I interactions.  相似文献   

12.
In the mol­ecule of the title compound, C16H13BrO, the two benzene rings are rotated in opposite directions with respect to the central C—C=C—C part of the mol­ecule. The phenone O atom deviates from the least‐squares plane of the mol­ecule by 0.300 (3) Å. In the crystal structure, mol­ecules are paired through C—H⋯π interactions. The molecular pairs along [001] are hydrogen bonded through three translation‐related co‐operative hydrogen bonds in the `bay area', forming molecular chains, which are further hydrogen bonded through C—H⋯Br weak interactions, forming (010) molecular layers. In the third direction, there are only weak van der Waals interactions. The co‐operative hydrogen bonds in the `bay area' are discussed briefly.  相似文献   

13.
Hybrid materials where layers of tin oxide alternate with layers of hydrophobic organic chains were prepared by the hydrolysis of distannylated compounds containing an organic chain alpha,omega-disubstituted by tripropynylstannyl groups. In the case of an aliphatic chain, hydrolysis under microemulsion conditions led to the organization of the corresponding hybrid. These hydrolysis conditions also induced a high surface area and a defined mesoporosity in the hybrid. When a mixed aromatic-aliphatic spacer was used, weak hydrophobic interactions between the spacers were sufficient to generate the same type of organization in the corresponding material.  相似文献   

14.
Dense poly(N-isopropylacrylamide) (PIPAAm) brushes were created on silica bead surfaces by surface-initiated atom transfer radical polymerization (ATRP). Interfacial properties of PIPAAm brushes were characterized by thermoresponisve interaction with biomolecules. The grafted amounts of PIPAAm on silica bead surfaces exceeded that from previously reported polymer-hydrogel-modified silica beads prepared by conventional radical polymerization by nearly 1 order of magnitude. Temperature-dependent chromatographic interactions with soluble analytes were modulated by changing the grafted PIPAAm chain lengths. Short PIPAAm-grafted silica beads produce insufficient dehydration and chain aggregation to separate steroids using weak hydrophobic interactions. In contrast, broad unresolved peaks were observed on silica beads column grafted with long PIPAAm chains due to steroid partitioning into thick, densely grafted PIPAAm brush layers. Thus, silica beads column grafted with PIPAAm chains of proper length can demonstrate baseline separation of steroids with relatively high resolution among the tested columns. Relatively longer retention times for steroid analytes were observed on all columns compared to those previously reported for other PIPAAm-grafted silica beads. This indicates that densely PIPAAm-grafted chains enable control of strong hydrophobic interactions with steroids by changing the column temperature. Densely grafted PIPAAm columns were also successful in separating two peptides into two peaks as the column temperature was increased to 40 degrees C. This provides an effective separation alternative for peptides using substantial hydrophobicity without modification of hydrophobic surfaces and/or low mobile phase pH. In conclusion, densely PIPAAm-grafted surfaces exhibit strong, reversible temperature-modulated hydrophobic interactions, facilitating baseline separations of steroids and peptides in aqueous milieu without changes in the mobile phase pH and high ionic strength.  相似文献   

15.
The title compound, C10H11BrO4, a useful precursor to pharmaceutically active isocoumarin and isochroman derivatives, crystallizes with two unique molecules in the asymmetric unit. A π–π stacking interaction links the planar molecules in the asymmetric unit. Additional π–π contacts stack pairs of molecules along the c axis. A feature of the crystal packing is the presence of a number of short Br...O contacts. A particularly unusual arrangement involves the formation of dimers, with pairs of Br...O contacts imposing a close Br...Br interaction and generating five‐membered rings within an eight‐membered ring formed by two Br...O contacts. Only two comparable arrangements have been reported previously. The Br...O contacts combine with weak C—H...O hydrogen bonds to form corrugated sheets of molecules approximately parallel to (001). These sheets are stacked along the c axis by π–π interactions to generate a three‐dimensional network.  相似文献   

16.
The interactions between poly(acrylamide-co-(N-octyl-4-vinylpyridinium bromide)) [AM5/VP5C8Br] cationic polyelectrolyte, and clay particles in dilute aqueous suspensions are studied in the aim of adsorption and flocculation. The extents of both phenomena are significantly influenced by the ionic strength of the medium. The adsorption of the clay particles on the copolymer chains occurs initially by the hydrophobic interaction. As flocculation mechanisms, the hydrophobic interaction between copolymer chains and the clay particles appears to be principal. In this work, we have prepared a copolymer which has been characterized by conductivity, viscosity, 1H NMR, and FT-IR spectroscopies. The copolymer dosage and pH are two of the most important experimental parameters in the coagulation/flocculation operations used for study and optimization of the wastewater treatment operations. Under optimized conditions, 97% efficiency of the turbidity elimination, with a very low flocculant concentration of 3?ppm have been achieved in order to produce drinking water with standard limits around the world (< 1 NTU). The conclusion drawn on the basis of these results is that wastewater treatment using this new copolymer [AM5/VP5C8Br] has proved to be a good flocculant in overseeing of wastewater turbidity problems.  相似文献   

17.
In the search for synthetic mimics of protein secondary structures relevant to the mediation of protein–protein interactions, we have synthesized a series of tetrasubstituted diphenylacetylenes that display β‐sheet structures in two directions. Extensive X‐ray crystallographic and NMR solution phase studies are consistent with these proteomimetics adopting sheet structures, displaying both hydrophobic and hydrophilic amino acid side chains.  相似文献   

18.
测定了一系列有机铵盐与一种全氟烷磺酸盐1:1混合体系水 溶液的表面张力,由此研究有机铵盐对碳氟表面活性剂表面活性及溶度的影响,导出应用于此种混合体系的Gibbs吸附公式,并讨论了混合体系中两表面活性组分的表面分子相互作用和表面层的结构。  相似文献   

19.
catena‐Poly[benzyldecyldimethylammonium [plumbate(II)‐tri‐μ‐bromido]], {(C19H34N)[PbBr3]}n, crystallizes as an inorganic–organic hybrid following monoclinic space‐group symmetry P21/c. The structure consists of extended chains running along the [001] direction and built of [PbBr3] units. These inorganic chains are separated by interdigitated ammonium cations which form hydrophilic layers through weak C—H...Br interactions. The architecture is essentialy the same as found for n‐alkylbenzyldimethylammonium bromides.  相似文献   

20.
The title compound, C8H4Br3NO4, shows an extensive hydrogen‐bond network. In the crystal structure, molecules are linked into chains by COO—H...O bonds, and pairs of chains are connected by additional COO—H...O bonds. This chain bundle shows stacking interactions and weak N—H...O hydrogen bonds with adjacent chain bundles. The three Br atoms present in the molecule form an equilateral triangle. This can be easily identified in the heavy‐atom substructure when this compound is used as a heavy‐atom derivative for experimental phasing of macromolecules. The title compound crystallizes as a nonmerohedral twin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号