首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Pauling and Corey proposed a pleated‐sheet configuration, now called α‐sheet, as one of the protein secondary structures in addition to α‐helix and β‐sheet. Recently, it has been suggested that α‐sheet is a common feature of amyloidogenic intermediates. We have investigated the stability of antiparallel β‐sheet and two conformations of α‐sheet in solution phase using the density functional theoretical method. The peptides are modeled as two‐strand acetyl‐(Ala)2N‐methylamine. Using stages of geometry optimization and single point energy calculation at B3LYP/cc‐pVTZ//B3LYP/6‐31G* level and including zero‐point energies, thermal, and entropic contribution, we have found that β‐sheet is the most stable conformation, while the α‐sheet proposed by Pauling and Corey has 13.6 kcal/mol higher free energy than the β‐sheet. The α‐sheet that resembles the structure observed in molecular dynamics simulations of amyloidogenic proteins at low pH becomes distorted after stages of geometry optimization in solution. Whether the α‐sheets with longer chains would be increasingly favorable in water relative to the increase in internal energy of the chain needs further investigation. Different from the quantum mechanics results, AMBER parm94 force field gives small difference in solution phase energy between α‐sheet and β‐sheet. The predicted amide I IR spectra of α‐sheet shows the main band at higher frequency than β‐sheet. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
The mimicry of protein‐sized β‐sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin‐14 β‐sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β‐Residues with diverse structural properties were utilized: Homologous β3‐amino acids, (1R,2S)‐2‐aminocyclopentanecarboxylic acid (ACPC), (1R,2S)‐2‐aminocyclohexanecarboxylic acid (ACHC), (1R,2S)‐2‐aminocyclohex‐3‐enecarboxylic acid (ACEC), and (1S,2S,3R,5S)‐2‐amino‐6,6‐dimethylbicyclo[3.1.1]heptane‐3‐carboxylic acid (ABHC). Six α/β‐peptidic chains were constructed in both monomeric and disulfide‐linked dimeric forms. Structural studies based on circular dichroism spectroscopy, the analysis of NMR chemical shifts, and molecular dynamics simulations revealed that dimerization induced β‐sheet formation in the 64‐residue foldameric systems. Core replacement with (1R,2S)‐ACHC was found to be unique among the β‐amino acid building blocks studied because it was simultaneously able to maintain the interstrand hydrogen‐bonding network and to fit sterically into the hydrophobic interior of the β‐sandwich. The novel β‐sandwich model containing 25 % unnatural building blocks afforded protein‐like thermal denaturation behavior.  相似文献   

3.
Understanding the structure of amyloid‐β (Aβ) aggregates is a key step towards elucidating the pathology of Alzheimer’s disease. In this work, three fragments of the Aβ1–42 protein, Aβ1–25 (DAEFRHDSGYEVHHQKLVFFAEDVG), Aβ25–35 (GSNKGAIIGLM), and Aβ33–42 (GLMVGGVVIA), were synthesized, and their aggregated structures were examined by linear infrared spectroscopy in the amide‐I (mainly the C?O stretching) region. The structures of the formed aggregates were found to be both sequence and pH dependent. The results suggest that instead of forming matured fibrils, as in the case of full‐length Aβ1–42, both Aβ1–25 and Aβ33–42 form a mixture of threadlike β‐sheet fibril, soluble β‐sheet oligomer, and random coil structures. The β‐sheet conformations were found to be mainly antiparallel for the former and both parallel and antiparallel for the latter. However, the Aβ25–35 fragment was found to form assembled fibrils containing predominantly parallel β‐sheets. The conformation and morphology of the aggregates were also confirmed by circular dichroism measurements and transmission electron microscopy. Factors influencing the structures of the aggregates formed by the Aβ fragments were discussed.  相似文献   

4.
Free‐standing nanoparticle films are of great importance for developing future nano‐electronic devices. We introduce a protein‐based fabrication strategy of free‐standing nanoparticle monolayer films. α‐Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold‐nanoparticle monolayer film interconnected by protein β‐sheet interactions. Owing to the stable protein–protein interaction, the film was successfully expanded to a 4‐inch diameter sheet, which has not been achieved with any other free‐standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer‐scale and thus unprecedented double‐component nanoparticle films were fabricated. Therefore, the free‐floating gold‐nanoparticle monolayer sheets with these properties could make the film useful for the development of bio‐integrated nano‐devices and high‐performance sensors.  相似文献   

5.
Aggregation of amyloid β‐peptide (Aβ) is closely related to the pathogenesis of Alzheimer’s disease (AD). Although much effort has been devoted to the construction of molecules that inhibit the aggregation of Aβ1‐42, high doses are needed for the inhibition of Aβ aggregation in many cases. Previously, we reported that designed green fluorescent protein (GFP) analogues that gives pseudo‐Aβ β‐sheet structures can work as an aggregation inhibitor against Aβ. To further test this design strategy, we constructed protein analogues that mimic Aβ β‐sheet structures of amyloids by using insulin‐like growth factor 2 receptor domain 11 (IGF2R‐d11) as a scaffold. A designed protein, named IG11KK, which has a parallel configuration of Aβ‐like β sheets, can bind more preferentially to oligomeric Aβ1‐42 than the monomer. Moreover, IG11KK suppressed the aggregation of Aβ1‐42 efficiently, even though lower concentrations of IG11KK than Aβ were used. The aggregation kinetics of Aβ in the presence of the designed proteins revealed that IG11KK can work as an inhibitor not only for the early to middle stages, but also in the latter stage of Aβ aggregation owing to its favorable binding to oligomeric structures of Aβ. The design strategy using β‐barrel proteins such as IGF2R‐d11 and GFP is useful in generating excellent inhibitors of protein misfolding and amyloid formation.  相似文献   

6.
The aim of this comprehensive review is to critically evaluate the progress in research in the area of protein folding. In the first section, we discuss the various models proposed to explain the protein folding paradox. In the succeeding section of the review, a detailed account of the developments in our understanding of the folding path ways of β‐sheet proteins is provided.  相似文献   

7.
A popular strategy in the de novo design of stable β‐sheet structures for various biomedical applications is the incorporation of aromatic pairs at the non‐hydrogen‐bonding (NHB) position. However, it is important to explicitly understand how aryl pair packing at the NHB region is coordinated with backbone structural rearrangements, and to delineate the benefits and drawbacks associated with stereopositional choice of dissimilar aromatic pairs. Here, we probe the consequences of flipped Trp/Tyr pairs by using engineered permutants at the NHB position of dodecapeptide β‐hairpins, proximal and distal to the turn. Extensive conformational analysis of these peptides using NMR and CD spectroscopy reveal that a classic Edge‐to‐Face and Face‐to‐Edge geometry at the proximal and distal aromatic pairs, respectively, in YW‐WY, is the most stabilizing. Such a preferred packing geometry in YW‐WY results in a highly twisted β‐sheet backbone, with Trp always providing a ‘Face’ orientation to its dissimilar aromatic partner Tyr. Flipping the proximal and/or distal aromatic pair distorts the ideal T‐shaped geometry, and results in alternate aryl arrangements that can adversely affect strand twist and β‐sheet stability. Our study reveals the existence of a strong stereopositional influence on the packing of dissimilar aromatic pairs. Our findings highlight the importance of modeling physical interaction forces while designing protein and peptide structures for functional applications.  相似文献   

8.
Aggregation of polyglutamine peptides with β‐sheet structures is related to some important neurodegenerative diseases such as Huntington's disease. However, it is not clear how polyglutamine peptides form the β‐sheets and aggregate. To understand this problem, we performed all‐atom replica‐exchange molecular dynamics simulations of one and two polyglutamine peptides with 10 glutamine residues in explicit water molecules. Our results show that two polyglutamine peptides mainly formed helix or coil structures when they are separated, as in the system with one‐polyglutamine peptide. As the interpeptide distance decreases, the intrapeptide β‐sheet structure sometimes appear as an intermediate state, and finally the interpeptide β‐sheets are formed. We also find that the polyglutamine dimer tends to form the antiparallel β‐sheet conformations rather than the parallel β‐sheet, which is consistent with previous experiments and a coarse‐grained molecular dynamics simulation. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Secondary structures such as α‐helix and β‐sheet are the major structural motifs within the three‐dimensional geometry of proteins. Therefore, structure transitions from β‐sheet to α‐helix not only can serve as an effective strategy for the therapy of neurological diseases through the inhibition of β‐sheet aggregation but also extend the application of α‐helix fibrils in biomedicine. Herein, we present a charge‐induced secondary structure transition of amyloid‐derived dipeptide assemblies from β‐sheet to α‐helix. We unravel that the electrostatic (charge) repulsion between the C‐terminal charges of the dipeptide molecules are responsible for the conversion of the secondary structure. This finding provides a new perspective to understanding the secondary structure formation and transformation in the supramolecular organization and life activity.  相似文献   

10.
Recently, a rational approach for constructing β‐barrel protein mimics by the self‐assembly of peptide‐based building blocks has been demonstrated. We performed molecular dynamics simulations of nanoring formation by means of the self‐assembly of designed β‐sheet‐forming peptides. Several factors contributing to the stability of the nanoring structures with respect to size were investigated. Our simulations predicted that an optimal nanoring size may be achieved by minimizing repulsions due to steric hindrance between bulky groups while maintaining favorable hydrogen‐bond interactions between neighboring β‐sheet chains. It was shown that mutations in a test peptide, in which all or half of the tryptophan residues were replaced by phenylalanine, could enable the assembly of stable nanoring structures with smaller pore sizes. Insights into the fundamental factors driving the formation of peptide‐based nanostructures are expected to facilitate the design of novel functional bionanostructures.  相似文献   

11.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

12.
Several 3‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐6‐substituted‐1,3,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazoles have been synthesized and the structures of these compounds were established by elemental analysis, MS, IR and 1H NMR spectral data.  相似文献   

13.
2‐Formylchromones and 3‐formylchromones as the first materials singly reacted with 2‐amino‐5‐mercapto‐1,3,4‐thiadiazole to give the corresponding Schiff bases, which on cyclocondensation with mercapto‐acetic acid in 1,4‐dioxane yielded target compounds named 4‐oxo‐thiazolidines. The structures of all the synthetic compounds were confirmed by elemental analysis and IR, 1H NMR, LC‐MS (ESI) spectral data.  相似文献   

14.
The title compound, C28H20N2O2, forms two conformational polymorphs, (I) and (II), where the molecular structures are similar except for the orientation of the two hydroxy groups. In (I), which was obtained by slow evaporation from chloroform, the two hydroxy groups have an anti conformation. The molecules form a sheet structure within the ac plane, where the hydroxy groups form zigzag hydrogen bonds. In (II), which was obtained by slow evaporation from acetonitrile, the two hydroxy groups have a syn conformation. The molecules form a double‐sheet structure within the ab plane, where the hydroxy groups form 4‐helix hydrogen bonds.  相似文献   

15.
Protein roll call : Peptide‐based building blocks, in which both an α‐helix‐forming segment and a β‐sheet segment are located within a single macrocyclic structure, self‐assemble into α‐helix‐decorated artificial proteins. This approach provides a starting point for developing artificial proteins that can modulate α‐helix‐mediated interactions occurring in a multivalent fashion.

  相似文献   


16.
The reaction of the hydrazide of pyridine‐4‐acetic acid with isothiocyanate gave thiosemicarbazide derivatives respectively. Further cyclization with 2% NaOH led to the formation of 4‐substituted 3‐(pyridin‐4‐ylmethyl)‐1,2,4‐triazoline‐5‐thione and 3‐(pyridin‐4‐ylmethyl)‐1,2,4‐triazoline‐5‐thione. The structures of all new products were confirmed by analytical and spectroscopic methods.  相似文献   

17.
The crystal structures of 1,2‐dimethyl‐3‐nitrobenzene, C8H9NO2, and 2,4‐dimethyl‐1‐nitrobenzene, C8H9NO2, which are liquids at room temperature, have been obtained through in‐situ cryocrystallization. Weak C—H...O and also π–π interactions are present in both crystal structures.  相似文献   

18.
Metal‐directed supramolecular construction represents one of the most powerful tools to prepare a large variety of structures and functions. The ability of metals to organize different numbers and types of ligands with a variety of geometries (linear, trigonal, octahedral, etc.) expands the supramolecular synthetic architecture. We describe here the precise construction of homo‐ and heterodimeric cyclic peptide entities through coordination of a metal (Pd, Au) and to β‐sheet‐type hydrogen‐bonding interactions. The selective coordination properties of the appropriate metal allow control over the cross‐strand interaction between the two‐peptide strands.  相似文献   

19.
Highly‐ordered protein structures have gained interest for future uses for biomaterials. Herein, we constructed a building block protein (BBP) by the circular permutation of the hyperthermostable Aquifex aeolicus cytochrome (cyt) c555, and assembled BBP into a triangle‐shaped trimer and a tetrahedron. The angle of the intermolecular interactions of BBP was controlled by cleaving the domain‐swapping hinge loop of cyt c555 and connecting the original N‐ and C‐terminal α‐helices with an α‐helical linker. We obtained BBP oligomers up to ≈40 mers, with a relatively large amount of trimers. According to the X‐ray crystallographic analysis of the BBP trimer, the N‐terminal region of one BBP molecule interacted intermolecularly with the C‐terminal region of another BBP molecule, resulting in a triangle‐shaped structure with an edge length of 68 Å. Additionally, four trimers assembled into a unique tetrahedron in the crystal. These results demonstrate that the circular permutation connecting the original N‐ and C‐terminal α‐helices with an α‐helical linker may be useful for constructing organized protein structures.  相似文献   

20.
Proteins and protein‐based assemblies represent the most structurally and functionally diverse molecules found in nature. Protein cages, viruses and bacterial microcompartments are highly organized structures that are composed primarily of protein building blocks and play important roles in molecular ion storage, nucleic acid packaging and catalysis. The outer and inner surface of protein cages can be modified, either chemically or genetically, and the internal cavity can be used to template, store and arrange molecular cargo within a defined space. Owing to their structural, morphological, chemical and thermal diversity, protein cages have been investigated extensively for applications in nanotechnology, nanomedicine and materials science. Here we provide a concise overview of the most common icosahedral viral and nonviral assemblies, their role in nature, and why they are highly attractive scaffolds for the encapsulation of functional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号