首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper presents a review on a series of recent investigations focused on the understanding of the role of various factors for the number, size, and location of the metal particles electrodeposited in conducting polymer (CP) layers. It is demonstrated that the initial oxidation state of the CP layer and its surface and bulk structure play an important role for the location of the metal particles. The use of metal anion complexes instead of the corresponding metal cations presents a helpful tool for affecting the location and number of metal crystals. The involvement of special metal/polymer interactions in the metal electrocrystallization process is another way for influencing the metal deposit. An alternative to the electrodriven deposition is the electroless metal precipitation based on the reducing ability of the CP layers. This approach results in metal particles deposition at the polymer surface and may be effectively controlled through parameters such as CP reduction charge, dipping time, and concentration of the metal-plating solution.  相似文献   

2.
This review summarizes recent advances in the chemistry of metal chelate monomers. Depending on the character of bonding of the metal to the chelating fragment, metal chelate monomers are divided into four main types: molecular metal chelates, intracomplex compounds, macrocyclic complexes, and polynuclear metal chelates. The synthetic methodologies for preparing metal chelate monomers are systematized. Special attention is paid to the effect of a metal on both the polymerization transformations of the metal chelate monomers and properties of the products formed. The bibliography includes papers published after 2010.  相似文献   

3.
The effects of various metal oxides upon the thermal decomposition of poly(vinyl chloride) (PVC) were previously reported. In this work, 23 metal chlorides were investigated to determine their effects on the thermal decomposition of PVC by pyrolysis–gas chromatography at 500°C. Each metal chloride exhibits influences on the course of thermal decomposition of PVC almost similar to the corresponding metal oxide except for a few elements; the metal chlorides from acidic metal oxides accelerate the thermal decomposition of PVC, but the metal chlorides from basic metal oxides do not. On comparing the effects of metal oxides and metal chlorides on the thermal decomposition of PVC, most metal chlorides were found to accelerate the thermal decomposition of PVC more than the corresponding metal oxides, owing to ease of addition of the chlorine atoms released from metal chloride to the dehydrochlorinated chains. It is concluded from these results that the thermal decomposition of PVC containing metal salts is markedly influenced by the ease with which chlorine atoms are released from the corresponding metal chloride.  相似文献   

4.
导电高分子/贵金属复合纳米材料因其在催化、传感、表面增强拉曼、光热治疗等诸多领域的应用前景而受到广泛关注.本文主要介绍我们课题组近年来利用可控合成策略制备的负载型和包埋型两种结构聚苯胺/贵金属复合纳米材料,以及利用复合纳米材料的结构和功能特性,对其在多相催化领域的应用、结构与催化性能之间构效关系的探索.  相似文献   

5.
Equilibrium sorption of cadmium and copper ions by modified and unmodified maize stalk was studied using a range of metal-ion concentrations and temperatures at various metal ion-substrate contact periods. The amount of metal ion removed from solution depended on the metal ion concentration, the metal ion-substrate contact period and the metal ion type. The level of metal ion uptake reached 15 mg/g of the substrate for cadmium ions at 0 degree C and was of the order Cd(II) greater than Cu(II). Modification improved the metal ion binding capacity of the substrate and increased the rate of metal ion uptake. The influence of temperature on the level and rate of metal ion uptake by the substrate was investigated.  相似文献   

6.
Recent advances in the synthesis and spectroscopic characterization of ligand-free metal clusters immobilized in cryogenic rare gas matrices have contributed greatly to the understanding of electronic, geometric, dynamic, and chemical bonding properties of a wide range of uni- and bimetallic clusters as a function of nuclearity and metal type. The knowledge accumulated on molecular metal aggregates devoid of ligands and isolated on various supports will form an important data base for gauging the reliability of quantum chemical calculations on metal clusters, as well as for comprehending certain aspects of chemisorption on, and catalysis by, supported metal clusters. It can be envisaged that information on ligand-free metal clusters entrapped in a wide range of matrix environments in conjunction with the data for these same metal clusters in the gas phase and in molecular beams will probably contribute towards understanding metal-support interactions and to the designed synthesis of a new breed of high-technology heterogeneous catalysts in the not too distant future.  相似文献   

7.
Conventional wisdom derived from experimental and theoretical studies of metal ion transport in liquid membrane systems suggests that the selective behavior of closely-related metal-sorbing vesicles (MSVs) should depend on independent interaction of ions with the membrane-bound carrier and with the encapsulated water soluble chelator. From a theoretical perspective, however, interdependent interactions between carrier, chelator and metal ion in a ternary complex can be designed into MSVs to augment significantly their metal ion selectivity. In this paper, we compare and contrast two transport models so as to elucidate MSV selectivity based on initial metal ion uptake rates from single and multi-component metal ion solutions. Our findings show that metal ion transport mechanisms that allow for interdependent interactions between the carrier and chelator, namely formation of a ternary metal ion–carrier–chelator complex at the inner vesicle wall, can enhance the overall selectivity of MSVs in accordance with a multiplicative, rather than additive, function of equilibrium metal–ligand binding constants. Therefore, design of MSVs that rely on metal ion transport mechanisms involving ternary complex formation may provide for a more economic route to extremely selective systems that employ less extensively tailored and less expensive metal-binding ligands.  相似文献   

8.
The metal coordination number (CN) is a key determinant of the structure and properties of metal complexes. It also plays an important role in metal selectivity in certain metalloproteins. Despite its central role, the preferred CN for several metal cations remains ambiguous, and the factors determining the metal CN are not fully understood. Here, we evaluate how the CN depends on (1) the metal's size, charge, and charge-accepting ability for a given set of ligands, and (2) the ligand's size, charge, charge-donating ability, and denticity for a given metal by analyzing the Cambridge Structural Database (CSD) structures of metal ions in the periodic table. The results show that for a given ligand type, the metal's size seems to affect its CN more than its charge, especially if the ligand is neutral, whereas, for a given metal type, the ligand's charge and charge-donating ability appear to affect the metal CN more than the ligand's size. Interestingly, all 98 metal cations surveyed could adopt more than than one CN, and most of them show an apparent preference toward even rather than odd CNs. Furthermore, as compared to the preferred metal CNs observed in the CSD, those in protein binding sites generally remain the same. This implies that the protein matrix (excluding amino acid residues in the metal's first and second coordination shell) does not impose severe geometrical restrictions on the bound metal cation.  相似文献   

9.
A glutamic acid-bonded silica (Glu-silica) stationary phase with cation-exchange properties was synthesized using l-glutamic acid as ligand and silica gel as matrix. The effects of solution pH value, salt concentration and metal ion on the retention of proteins were examined. The standard protein mixture was separated with a prepared chromatographic column and an iminodiacetic acid column, and compared. The influence of the binding capacity of an immobilized metal ion on the complexation of metal chelate column was studied. The results indicate that the obtained column displays cation-exchange characteristic and better separation ability for proteins. As fixing metal ion on the Glu-silica column, retention of proteins on the column is a cooperative interaction of metal chelate and cation-exchange. The stationary phase shows the typical metal chelate properties with the increase of the sorption capacity of immobilized metal ion.  相似文献   

10.
The interface between solid electrolytes and Li metal is a primary issue for solid‐state batteries. Introducing a metal interlayer to conformally coat solid electrolytes can improve the interface wettability of Li metal and reduce the interfacial resistance, but the mechanism of the metal interlayer is unknown. In this work, we used magnesium (Mg) as a model to investigate the effect of a metal coating on the interfacial resistance of a solid electrolyte and Li metal anode. The Li–Mg alloy has low overpotential, leading to a lower interfacial resistance. Our motivation is to understand how the metal interlayer behaves at the interface to promote increased Li‐metal wettability of the solid electrolyte surface and reduce interfacial resistance. Surprisingly, we found that the metal coating dissolved in the molten piece of Li and diffused into the bulk Li metal, leading to a small and stable interfacial resistance between the garnet solid electrolyte and the Li metal. We also found that the interfacial resistance did not change with increase in the thickness of the metal coating (5, 10, and 100 nm), due to the transient behavior of the metal interface layer.  相似文献   

11.
12.
In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a pi-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically. It appears that the interface dipole formed at an organic/metal interface can be divided into two contributions: (i) the first corresponds to the "chemical" dipole induced by a partial charge transfer between the organic layers and the metal upon chemisorption of the organic molecules on the metal surface, and (ii) the second relates to the change in metal surface dipole because of the modification of the metal electron density tail that is induced by the presence of the adsorbed organic molecules. Our analysis shows that the charge injection barrier in devices can be tuned by modulating various parameters: the chemical potential of the bare metal (given by its work function), the metal surface dipole, and the ionization potential and electron affinity of the organic layer.  相似文献   

13.
In a mixture of metal ions and complexes, it is difficult to predict ecological risk without understanding the contribution of each metal species to biouptake. For microorganisms, the rate of uptake (internalization flux) has not only a major influence on the total metal flux but also on the bioavailability of the various metal species and their relative contributions to the total flux. In this paper, the microorganism is considered as a consuming interface, which interacts with the metal ion, M, via the Michaelis-Menten boundary conditions. The contribution of each metal complex to the overall metal flux, in relation to its lability, is examined for a number of important boundary parameters (the equilibrium constant K(a) of metal with transport sites, internalization rate constant k(int) and total transport sites concentration {R}(t)). Computations were performed for Cu(II) complexes, in a multicomponent culture medium for microoganisms. For a one-ligand system, results were acquired using rigorous mathematical expressions, whereas approximate expressions, based on the reaction layer approximation (RLA) and rigorous numerical computations (computer codes MHEDYN and FLUXY), were employed for ligand mixtures. Under the condition of ligand excess, as often found in the natural environment, the relative contribution of each metal species to the total flux is shown to be independent of the boundary conditions. This finding has important implications, including an improved basis for relating the analytical signals of dynamic metal speciation sensors to metal bioavailability.  相似文献   

14.
Lithium (Li) metal is the most promising electrode for next-generation rechargeable batteries. However, the challenges induced by Li dendrites on a working Li metal anode hinder the practical applications of Li metal batteries. Herein, nitrogen (N) doped graphene was adopted as the Li plating matrix to regulate Li metal nucleation and suppress dendrite growth. The N-containing functional groups, such as pyridinic and pyrrolic nitrogen in the N-doped graphene, are lithiophilic, which guide the metallic Li nucleation causing the metal to distribute uniformly on the anode surface. As a result, the N-doped graphene modified Li metal anode exhibits a dendrite-free morphology during repeated Li plating and demonstrates a high Coulombic efficiency of 98 % for near 200 cycles.  相似文献   

15.
Coating films containing Au, Ag, Pt and Pd metal colloids have been prepared by sol-gel processing. It is shown that for oxide films the temperature where the metal particles are precipitated by heating in air depends on metal species: 200°C for Au, 600°C for Ag, 800°C for Pt and 1000°C for Pd. The use of reducing atmosphere lowers the temperature for formation of noble metal colloids. This procedure can be used for direct formation of metal colloids from metal ions in the film as well as reduction of oxide particles to metal particles in the film. For an organic-inorganic matrix, noble metal colloids are precipitated by thermal reduction or photo-reduction. Thermal reduction occurs as a result of reduction by decomposing organic matter. Photo-reduction occurs as a result of UV irradiation.  相似文献   

16.
The significance of terms "metal bioavailability" and "bioavailable metal fraction" is evolved in the time, passing from a very simple concept to a complex concept bound to abiotic and biotic aspects. At the beginning metal toxicity was related to metal fraction present in water phase, than only free metal ion activity was considered and the free ion activity model (FIAM) was proposed. Successively, due to the exceptions observed and to the consciousness that metal bioavailability could be considered as dynamic characteristic the concept of metal bioavailability became very complex, depending on physical, chemical and biological factors.  相似文献   

17.
The effects of different metal cations on the fluorescence of water-soluble conjugated polymer (CP) and their quenching mechanism have been explored. Most transition metal cations, especially noble metal cations, such as Pd2+, Ru3+, and Pt2+ possessed higher quenching efficiency to CP fluorescence than that of the main group metal cations and other transition metal cations, which have filled or half-full outmost electron layer configurations. Base on this, rapid, sensitive detection of noble metal cations can be realized and a novel quencher-tether-ligand (QTL) probe was developed to detect avidin and streptavidin.  相似文献   

18.
The properties of supported non‐noble metal particles with a size of less than 1 nm are unknown because their synthesis is a challenge. A strategy has now been created to immobilize ultrafine non‐noble metal particles on supports using metal–organic frameworks (MOFs) as metal precursors. Ni/SiO2 and Co/SiO2 catalysts were synthesized with an average metal particle size of 0.9 nm. The metal nanoparticles were immobilized uniformly on the support with a metal loading of about 20 wt %. Interestingly, the ultrafine non‐noble metal particles exhibited very high activity for liquid‐phase hydrogenation of benzene to cyclohexane even at 80 °C, while Ni/SiO2 with larger Ni particles fabricated by a conventional method was not active under the same conditions.  相似文献   

19.
Two-dimensional (2D) nanomaterials show unique electrical, mechanical, and catalytic performance owing to their ultrahigh surface-to-volume ratio and quantum confinement effects. However, ways to simply synthesize 2D metal oxide nanosheets through a general and facile method is still a big challenge. Herein, we report a generalized and facile strategy to synthesize large-size ultrathin 2D metal oxide nanosheets by using graphene oxide (GO) as a template in a wet-chemical system. Notably, the novel strategy mainly relies on accurately controlling the balance between heterogeneous growth and nucleation of metal oxides on the surface of GO, which is independent on the individual character of the metal elements. Therefore, ultrathin nanosheets of various metal oxides, including those from both main-group and transition elements, can be synthesized with large size. The ultrathin 2D metal oxide nanosheets also show controllable thickness and unique surface chemical state.  相似文献   

20.
徐元耀 《有机化学》1985,5(1):44-59
过渡金属化学已发展成为有机合成的重要方法,本文综述了它在精细有机合成中应用的一些进展。叙述了金属有机化合物作为亲电体与亲核试剂反应,金属有机化合物作为亲核体与亲电试剂反应,以及偶合和环化反应。应用这些反应可以巧妙地合成若干天然产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号