首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ordered mesoporous metal oxides: synthesis and applications   总被引:2,自引:0,他引:2  
Ren Y  Ma Z  Bruce PG 《Chemical Society reviews》2012,41(14):4909-4927
Great progress has been made in the preparation and application of ordered mesoporous metal oxides during the past decade. However, the applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different methods for the preparation of ordered mesoporous metal oxides; we then review their applications in energy conversion and storage, catalysis, sensing, adsorption and separation. The correlations between the textural properties of ordered mesoporous metal oxides and their specific performance are highlighted in different examples, including the rate of Li intercalation, sensing, and the magnetic properties. These results demonstrate that the mesoporosity has a direct impact on the properties and potential applications of such materials. Although the scope of the current review is limited to ordered mesoporous metal oxides, we believe that the information may be useful for those working in a number of fields.  相似文献   

2.
Nanostructured metals are vital materials in several (electro)chemical applications. Despite the substantial progress in this field, still many limitations are associated with traditional synthetic procedures, including the availability of stable nanoparticles on appropriate supports by avoiding migration and aggregation. On that front, cathodic corrosion has emerged as a powerful technique to tailor the surface structure of metal surfaces on the nanoscale. Cathodic corrosion crucially depends on the electrode potential, the nature and the concentration of cations, as well as the electrode material. Controlling these parameters is essential for applying cathodic corrosion in materials design. In this short review, we discuss the most critical parameters controlling cathodic corrosion and highlight the importance of the nature and the concentration of alkali metal hydroxides in aqueous solution.  相似文献   

3.
Diverse three-dimensional (3D) porous metal electrodes, including meshes, foams and felts, are used in electrochemical flow reactors for a wide range of industrial applications, such as energy storage, electrosynthesis and degradation of pollutants. Recent work centres on the hierarchical decoration and coating of 3D electrodes with catalysts, although the study of their performance in a controlled and reproducible flow and mass transfer environment ought to receive more attention. New advances have considered metal nanofelts and nanomesh porous electrodes with superior electrode surface area. Opportunities are found in additive manufacturing, advanced structural characterisation by, for example, X-ray computed tomography, and in the modelling of hydrodynamic characteristics, current distribution and mass transfer coefficient of these electrode materials.  相似文献   

4.
表面修饰是一种重要的材料处理手段,被广泛应用于催化、光化学、电化学等领域。本文阐述了通过表面均匀包覆构建具有特定功能核壳结构的意义,并分析了构筑均匀包覆层的典型合成方法。同时,针对锂离子电池电极材料这一特定应用对象,综述了进行电极材料表面均匀包覆处理的途径,强调了电极材料核壳结构的构筑对于电极材料表面稳定、电化学性能优化等意义。  相似文献   

5.
Wanekaya AK 《The Analyst》2011,136(21):4383-4391
This article reviews applications of nanoscale carbon-based materials in heavy metal sensing and detection. These materials, including single-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanofibers among others, have unique and tunable properties enabling applications in various fields spanning from health, electronics and the environment sector. Specifically, we highlight the unique properties of these materials that enable their applications in the sorption and preconcentration of heavy metals ions prior to detection by spectroscopic, chromatographic and electrochemical techniques. We also discuss their distinct properties that enable them to be used as novel electrode materials in sensing and detection. The fabrication and modification of these electrodes is discussed in detail and their applications in various electrochemical techniques such as voltammetric stripping analysis, potentiometric stripping analysis, field effect transistor-based devices and electrical impedance are critically reviewed. Perspectives and futures trends in the use of these materials in heavy metal sensing and detection will also be highlighted.  相似文献   

6.
Tyson JF  West TS 《Talanta》1979,26(2):117-125
An apparatus has been built with which the intensity of a light-beam passing at grazing incidence over a platinum electrode can be monitored. The absorption of light which occurs during the electrolysis of dilute aqueous metal ion solutions has been studied as a function of a number of parameters including wavelength, potential difference and concentration. The theories of metal deposition and processes occurring at the electrode surface and in the diffusion layer have been examined and a mechanism for the production of the absorbing species in terms of increase in pH of the catholyte is proposed. The analytical potential of the technique is discussed.  相似文献   

7.
Lithium (Li) metal has attracted significant attention in areas that range from basic research to various commercial applications due to its high theoretical specific capacity (3860 mA h g−1) and low electrochemical potential (−3.04 vs. standard hydrogen electrode). However, dendrites often form on the surfaces of Li metal anodes during cycling and thus lead to battery failure and, in some cases, raise safety concerns. To overcome this problem, a variety of approaches that vary the electrolyte, membrane, and/or anode have been proposed. Among these efforts, the use of three-dimensional frameworks as Li hosts, which can homogenize and minimize the current density at the anode surface, is an effective approach to suppress the formation of Li dendrites. Herein, we describe the development of using carbon-based materials as Li hosts. While these materials can be fabricated into a variety of porous structures, they have a number of intrinsic advantages including low costs, high specific surface areas, high electrical conductivities, and wide electrochemical stabilities. After briefly summarizing the formation mechanisms of Li dendrites, various methods for controlling structural and surface chemistry will be described for different types of carbon-based materials from the viewpoint of improving their performance as Li hosts. Finally, we provide perspective on the future development of Li host materials needed to meet the requirements for their use in flexible and wearable devices and other contemporary energy storage techniques.  相似文献   

8.
Worldwide, the research on advanced materials for energy storage devices has drawn greater attention. Numerous works on different energy storage materials has been reported and still continuing. Among the energy storage devices, electrochemical supercapacitors (ESs) are one of the most investigated topics. The globalization and increasing demand of smart and flexible devices has forced the current research to develop low-cost, high-energy density and stable ESs. In this regard, metal sulfides (MSs)–based materials have been envisioned for ESs applications owing to their unique and promising properties. Recently, several research articles have been published on MSs-based electrodes for ESs with enhanced performances. This review presents a brief survey on such recent developments towards synthesis of MSs and their use as an efficient electrode material in ESs. The challenges and future aspect involved with MSs to develop and establish it as a promising energy storage material are also discussed.  相似文献   

9.
A general method for the synthesis of metal oxide hollow spheres has been developed by using carbonaceous polysaccharide microspheres prepared from saccharide solution as templates. Hollow spheres of a series of metal oxides (SnO2, Al2O3, Ga2O3, CoO, NiO, Mn3O4, Cr2O3, La2O3, Y2O3, Lu2O3, CeO2, TiO2, and ZrO2) have been prepared in this way. The method involves the initial absorption of metal ions from solution into the functional surface layer of carbonaceous saccharide microspheres; these are then densified and cross-linked in a subsequent calcination and oxidation procedure to form metal oxide hollow spheres. Metal salts are used as starting materials, which widens the accessible field of metal oxide hollow spheres. The carbonaceous colloids used as templates have integral and uniform surface functional layers, which makes surface modification unnecessary and ensures homogeneity of the shell. Macroporous films or cheese-like nanostructures of oxides can also be prepared by slightly modified procedures. XRD, TEM, HRTEM, and SAED have been used to characterize the structures. In a preliminary study on the gas sensitivity of SnO2 hollow spheres, considerably reduced "recovery times" were noted, exemplifying the distinct properties imparted by the hollow structure. These hollow or porous nanostructures have the potential for diverse applications, such as in gas sensitivity or catalysis, or as advanced ceramic materials.  相似文献   

10.
对高性能超级电容器不断增长的需求促进了无粘合剂电极材料的快速发展。静电纺纳米纤维由于具有良好的柔性、大比表面积、高孔隙率、容易制备等优点引起了研究者们的强烈关注。本文综述了静电纺纳米纤维基无粘合剂电极材料在超级电容器领域的研究进展,阐述了不同材料的设计制备过程和提升电化学性能的诸多方法,并指明了静电纺纳米纤维基超级电容器无粘合剂电极材料的发展机遇与挑战,为性能优异的无粘合剂超级电容器电极材料的进一步开发与应用拓宽了思路。  相似文献   

11.
The origin of the potential difference between the potential of zero charge of a metal/water interface and the work function of the metal is a recurring issue because it is related to how water interacts with metal surface in the absence of surface charge. Recently ab initio molecular dynamics method has been used to model electrochemical interfaces to study interfacial potential and the structure of interface water. Here, we will first introduce the computational standard hydrogen electrode method, which allows for ab initio determination of electrode potentials that can be directly compared with experiment. Then, we will review the recent progress from ab initio molecular dynamics simulation in understanding the interaction between water and metal and its impact on interfacial potential. Finally, we will give our perspective for future development of ab initio computational electrochemistry.  相似文献   

12.
《中国化学快报》2020,31(9):2339-2342
Lithium (Li) metal, possessing an extremely high theoretical specific capacity (3860 mAh/g) and the most negative electrode potential (−3.040 V vs. standard hydrogen electrode), is one the most favorable anode materials for future high-energy-density batteries. However, the poor cyclability and safety issues induced by extremely unstable interfaces of traditional liquid Li metal batteries have limited their practical applications. Herein, a quasi-solid battery is constructed to offer superior interfacial stability as well as excellent interfacial contact by the incorporation of Li@composite solid electrolyte integrated electrode and a limited amount of liquid electrolyte (7.5 μL/cm2). By combining the inorganic garnet Al-doped Li6.75La3Zr1.75Ta0.25O12 (LLZO) with high mechanical strength and ionic conductivity and the organic ethylene-vinyl acetate copolymer (EVA) with good flexibility, the composite solid electrolyte film could provide sufficient ion channels, sustained interfacial contact and good mechanical stability at the anode side, which significantly alleviates the thermodynamic corrosion and safety problems induced by liquid electrolytes. This innovative and facile quasi-solid strategy is aimed to promote the intrinsic safety and stability of working Li metal anode, shedding light on the development of next-generation high-performance Li metal batteries.  相似文献   

13.
盘盈滢  胡茜  林晓明  许旋  罗一帆 《化学通报》2020,83(10):883-890
金属–有机框架(MOFs)材料具有比表面积较大、孔径可调、制备容易、结构与功能多样性等优势,被广泛应用于电化学能源转化与储存领域。其中独特的核壳结构材料由于表面修饰的作用往往更能表现出核内与壳层的协同作用。本文介绍了具有核壳结构MOFs作为锂离子电池负极材料的发展现状,并重点综述其衍生物(多孔碳材料、金属氧化物、金属硫/硒化物以及金属/金属氧化物)的制备方法以及在锂离子电池负极中的应用。MOFs通过高温煅烧或改变化学反应条件的方法,可制备出结构可调的传统无机电极材料并表现出更优异的电化学性能。最后总结了核壳结构MOFs材料作为锂电负极材料存在的问题和挑战,并提出可能的解决途径和未来的应用前景。  相似文献   

14.
《Electroanalysis》2006,18(1):77-81
The engineered addition of hexa‐histidine sequences to biomolecules such as antibody fragments has been found to be an excellent means of purifying these materials. This tagging methodology has also been extended to its use as a tool for immobilization and orientation of antibodies on transducer surfaces. Polyvinyl sulfonate‐doped polyanilne (PANI/PVS) can be used as a mediator in amperometric biosensors. This short communication looks at the effect of nickel chelate materials and nickel chelation on this conducting polymer and evaluates it as a potential surface for the immobilization of his‐tagged biomolecules. N‐nitrilotriacetic acid (NTA) was doped into the electropolymerized PANI/PVS at a screen‐printed carbon paste electrode. The resulting NTA‐PANI/PVS film was shown to have comparable electrochemical properties of polymer without the chelating agent. When Ni2+ was applied to the electrode, the incorporated NTA was found to efficiently chelate the metal ions at the electrode surface.  相似文献   

15.
《中国化学快报》2020,31(9):2177-2188
In the past few years, the increasing energy consumption of traditional fossil fuels has posed a huge threat to human health. It is very imperious to develop the sustainable and renewable energy storage and conversion devices with low cost and environment friendly features. Hybrid supercapacitors are emerging as one of the promising energy devices with high power density, fast charge-discharge process and excellent cycle stability. However, morphology and structure of the electrode materials exert serious effect on their electrochemical performances. In this review, we summarized recent progresses in transition metal oxide based electrode materials for supercapacitors. Different synthesis routes and electrochemical performances of electrode materials and storage mechanisms of supercapacitor devices have been presented in details. The future developing trends of supercapacitor based on metal oxide electrode materials are also proposed.  相似文献   

16.
溶胶-凝胶法是常见的制备金属氧化物的方法之一。在溶胶-凝胶法中,各种反应物能达到分子级的均匀混合,因此能制备成份复杂的氧化物材料。目前,溶胶-凝胶法也应用于设计与制备金属纳米材料,特别是合金纳米颗粒。例如,溶胶-凝胶法能应用于制备CoPt、FePt等磁性纳米合金材料以及CoCrCuNiAl高熵合金纳米材料,以及物相结构为有序相的Cu3Pt合金纳米材料。本文综述溶胶-凝胶法设计制备金属纳米材料的研究进展,包括溶胶-凝胶法实施的基本步骤、该方法在制备金属纳米材料方面的具体应用,并着重论述采用热力学计算设计金属及化合物的基本原理。该基本原理包括计算金属氧化物与还原性气体如氢气的还原反应的吉布斯自由能的变化量、金属氧化物的标准电极电位(不同于金属离子的标准电极电位)。最后探讨溶胶-凝胶法设计制备金属纳米材料存在的问题以及后续可能的发展方向。  相似文献   

17.
A mathematical model of the electrochemical metal deposition process in a flow 3D electrode is developed with account for dynamic distribution of the flow velocity of electrolyte, metal mass, potential, porosity, conductivity, specific electrode surface area, and other characteristics in the local volume of the electrode. These characteristics of the process and electrode are considered as functions of time and coordinate within the electrode. The results of experimental studies and calculations of copper electrodeposition process from ammonium sulfate electrolyte onto cathodes of graphitized carbon fibrous materials with different conductivity are presented at different initial flow velocities of electrolyte.  相似文献   

18.
19.
重金属离子污染问题一直备受关注。开发利用多孔材料吸附去除水中重金属离子一直是材料、环境等相关学科领域的研究热点之一。金属有机框架材料(metal?organic frameworks,MOFs)是一类新型的多孔材料,具有结构多样、比表面积大、孔径可调、孔表面特征易设计调控等特点,在气体分离、催化、传感等领域表现出极大的应用潜力。近年来,高稳定MOF材料的构筑取得了许多重大突破,大量研究工作探索了这类材料在水中的应用,包括水中重金属离子的吸附去除。Cr(Ⅵ)离子是一类毒性大、分布广的重金属离子,不同条件下存在形态多样,其吸附去除研究具有理论和实际意义。本文主要综述了近年来利用MOF材料吸附去除水中Cr(Ⅵ)离子的研究工作,并将这些材料归属为:(1)高稳定的锆基MOF、(2)阳离子框架型MOF、(3)后修饰的MOF及(4)MOF基复合材料4类;也对这些材料的Cr(Ⅵ)离子吸附机理、吸附量、材料再生性等进行了概括;最后分析了MOF材料在重金属离子吸附去除实际应用上存在的问题并展望了今后的重点研究方向。  相似文献   

20.
Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. In this minireview, we review the recent progress in the synthesis and applications of thin metal nanostructures with a focus on metal nanoplates and nanosheets. First of all, various methods for the synthesis of metal nanoplates and nanosheets are summarized. After a brief introduction of their properties, some applications of metal nanoplates and nanosheets, such as catalysis, surface enhanced Raman scattering (SERS), sensing and near-infrared photothermal therapy are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号