首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The experimental 1H nuclear magnetic resonance (NMR) spectrum of 1H‐pyrazole was recorded in thermotropic nematic liquid crystal N‐(p‐ethoxybenzylidene)‐p‐butylaniline (EBBA) within the temperature range of 299–308 K. Two of three observable dipolar DHH‐couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Residual dipolar couplings (RDCs) are amongst the most powerful NMR parameters for organic structure elucidation. In order to maximize their effectiveness in increasingly complex cases such as flexible compounds, a maximum of RDCs between nuclei sampling a large distribution of orientations is needed, including sign information. For this, the easily accessible one‐bond 1H–13C RDCs alone often fall short. Long‐range 1H–1H RDCs are both abundant and typically sample highly complementary orientations, but accessing them in a sign‐sensitive way has been severely obstructed due to the overflow of 1H–1H couplings. Here, we present a generally applicable strategy that allows the measurement of a large number of 1H–1H RDCs, including their signs, which is based on a combination of an improved PSYCHEDELIC method and a new selective constant‐time β‐COSY experiment. The potential of 1H–1H RDCs to better determine molecular alignment and to discriminate between enantiomers and diastereomers is demonstrated.  相似文献   

3.
Provided that 13C‐detected NMR experiments are either preferable or complementary to 1H detection, we report here tools to determine Cα? C′, C′? N, and Cα? Hα residual dipolar couplings on the basis of the CON experiment. The coupling constants determined on ubiquitin are consistent with the subset measured with the 1H‐detected HNCO sequences. Since the utilization of residual dipolar couplings may depend on the mobility of the involved nuclei, we also provide tools to measure longitudinal and transverse relaxation rates of N and C′. This new set of experiments is a further development of a whole strategy based on 13C direct‐detection NMR spectroscopy for the study of biological macromolecules.  相似文献   

4.
NMR anisotropic parameters such as dipolar couplings and chemical shifts are central to structure and orientation determination of aligned membrane proteins and liquid crystals. Among the separated local field experiments, the proton evolved local field (PELF) scheme is particularly suitable to measure dynamically averaged dipolar couplings and give information on local molecular motions. However, the PELF experiment requires the acquisition of several 2D datasets at different mixing times to optimize the sensitivity for the complete range of dipolar couplings of the resonances in the spectrum. Here, we propose a new PELF experiment that takes the advantage of the Hadamard encoding (HE) to obtain higher sensitivity for a broad range of dipolar couplings using a single 2D experiment. The HE scheme is obtained by selecting the spin operators with phase switching of hard pulses. This approach enables one to detect four spin operators, simultaneously, which can be processed into two 2D spectra covering a broader range of dipolar couplings. The advantages of the new approach are illustrated for a U-(15)N NAL single crystal and the U-(15)N labeled single-pass membrane protein sarcolipin reconstituted in oriented lipid bicelles. The HE-PELF scheme can be implemented in other multidimensional experiments to speed up the characterization of the structure and dynamics of oriented membrane proteins and liquid crystalline samples.  相似文献   

5.
 Cross polarisation is extensively used in solid state NMR for enhancing signals of nuclei with low gyromagnetic ratio. However, the use of the method for providing quantitative structural and dynamics information is limited. This arises due to the fact that the mechanism which is responsible for cross polarisation namely, the dipolar interaction, has a long range and is also anisotropic. In nematic liquid crystals these limitations are easily overcome since molecules orient in a magnetic field. The uniaxial ordering of the molecules essentially removes problems associated with the angular dependence of the interactions encountered in powdered solids. The molecular motion averages out intermolecular dipolar interaction, while retaining partially averaged intramolecular interaction. In this article the use of cross polarisation for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment were considered and their utility illustrated. A method for obtaining proton–proton dipolar couplings, by utilizing cross polarisation from the dipolar reservoir, is also presented.  相似文献   

6.
1H multiple quantum (MQ) NMR spectra of toluene and p‐bromotoluene, partially aligned in a liquid crystalline solvent, were acquired using gradient‐assisted methods. The MQ spectra were analysed to give the dipolar couplings (Dij) and these were used to determine the molecular shape and average orientation of the of the spin systems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A liquid crystal ( HZL 7/* ) containing an (S)‐2‐methylbutyl‐(S)‐lactate unit in the chiral chain, is investigated by means of 2H and 13C NMR spectroscopy in order to obtain information on its orientational order, its molecular structure and the effect of external magnetic fields on the supramolecular structure of its phases. This mesogen presents very peculiar mesomorphic properties and exhibits frustrated TGBA* and TGBC* phases in a wide temperature range up to 60 °C, as well as an additional phase transition from TGBC1* to TGBC2*. 2H NMR measurements show, for the first time, a peculiar magnetic field effect in unwinding the supramolecular structure of both the TGBA* and TGBC* phases. This effect is particularly evident at higher magnetic fields, while different behaviour is observed at lower magnetic fields. This indicates that the supramolecular structure is very sensitive to magnetic fields of the order of 1 Tesla. Moreover, the analysis of the 2H and 13C NMR spectra of HZL 7/* allow us to obtain several structural properties, such as the tilt angle of the TGBC* phases and the local orientational order parameters referred to the phenyl and biphenyl fragments. This is the first structural characterization of the frustrated phases of these complexes by means of NMR.  相似文献   

8.
Summary.  Cross polarisation is extensively used in solid state NMR for enhancing signals of nuclei with low gyromagnetic ratio. However, the use of the method for providing quantitative structural and dynamics information is limited. This arises due to the fact that the mechanism which is responsible for cross polarisation namely, the dipolar interaction, has a long range and is also anisotropic. In nematic liquid crystals these limitations are easily overcome since molecules orient in a magnetic field. The uniaxial ordering of the molecules essentially removes problems associated with the angular dependence of the interactions encountered in powdered solids. The molecular motion averages out intermolecular dipolar interaction, while retaining partially averaged intramolecular interaction. In this article the use of cross polarisation for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment were considered and their utility illustrated. A method for obtaining proton–proton dipolar couplings, by utilizing cross polarisation from the dipolar reservoir, is also presented. Corresponding author. E-mail: kvr@sif.iisc.ernet.in Received May 28, 2002; accepted June 19, 2002  相似文献   

9.
Real‐time band‐selective homonuclear 1H decoupling during data acquisition of z‐filtered J‐resolved spectroscopy produces 1H‐decoupled 1H NMR spectra and leads to sensitivity enhancement and improved resolution, and thus aids the measurement of J couplings and residual dipolar couplings in crowded regions of 1H NMR spectrum. High quality spectra from peptides, organic molecules, and also from enantiomers dissolved in weakly aligned chiral media are reported.  相似文献   

10.
The dynamic behaviors of ionic liquid samples consisting of a series of 1‐alkyl‐3‐methylimidazolium cations and various counteranionic species are investigated systematically over a wide frequency range from 1 MHz to 20 GHz at room temperature using dielectric relaxation (DR) and nuclear magnetic resonance (NMR) spectroscopies. DR spectra for the ionic liquids are reasonably deconvoluted into two or three relaxation modes. The slowest relaxation times are strongly dependent upon sample viscosity and cation size, whereas the relaxation times of other modes are almost independent of these factors. We attribute the two slower relaxation modes to the rotational relaxation modes of the dipolar cations because the correlation times of the cations evaluated using longitudinal relaxation time (T1 13C NMR) measurements corresponded to the dielectric relaxation times. On the other hand, the fastest relaxation mode is presumably related to the inter‐ion motions of ion‐pairs formed between cationic and anionic species. In the case of the ionic liquid bis(trifluoromethanesulfonyl)imide, the system shows marked dielectric relaxation behavior due to rotational motion of dipolar anionic species in addition to the relaxation modes attributed to the dipolar cations.  相似文献   

11.
Experimentally measured residual dipolar couplings (RDCs) are highly valuable for atomic‐resolution structural and dynamic studies of molecular systems ranging from small molecules to large proteins by solution NMR spectroscopy. Here we demonstrate the first use of magnetic‐alignment behavior of lyotropic liquid‐crystalline polymer macro‐nanodiscs (>20 nm in diameter) as a novel alignment medium for the measurement of RDCs using high‐resolution NMR. The easy preparation of macro‐nanodiscs, their high stability against pH changes and the presence of divalent metal ions, and their high homogeneity make them an efficient tool to investigate a wide range of molecular systems including natural products, proteins, and RNA.  相似文献   

12.
In this review, methods to obtain the orientational order of topologically variant molecular mesogens using by one- and two-dimensional (2D) solid-state 13C nuclear magnetic resonance (NMR) spectroscopy are described. Besides 13C chemical shifts, the 13C─1H dipolar couplings measured from 2D-separated local field (SLF) technique are used for computing the order parameters of a variety of mesogens. The investigated molecules are composed of a variable number of rings in the core, that is, core ranging from simply one ring to five rings. Among the mesogens investigated, a special focus has been placed on mesogens with thiophene rings, which are gaining popularity as liquid crystalline organic semiconductors. The replacement of a phenyl ring by thiophene in the core has a dramatic influence on molecular topology, as observed from the measured order parameters. The review highlights the advantages of the 2D SLF method for understanding the local dynamics and for mapping the topology of mesogens through the measured order parameters. SLF NMR studies of as many as 24 molecular mesogens that vary in terms of the molecular structure as well as topology are covered in the review. Order parameters of the rings have been estimated from the 13C─1H dipolar couplings in the nematic, smectic A, smectic C, and tilted hexatic phases as well as in B1 and B2 mesophases of various mesogens. It is anticipated that, in the years to come, the 2D SLF method would provide advanced molecular information on structurally complex mesogens that are emerging in liquid crystal science through the incessant efforts of synthetic chemists. The mini review covers the orientational order of topologically variant molecular mesogens determined by 1D and 2D solid-state 13C NMR spectroscopy. Accordingly, rod-like, bent-core, and thiophene mesogens were subjected to 2D SLF measurements to get the order parameters from which the topology was established. The replacement of phenyl ring by thiophene and its influence on order parameters as well as on molecular topology is also discussed.  相似文献   

13.
Anisotropic NMR parameters, such as residual dipolar couplings (RDCs), residual chemical shift anisotropies (RCSAs) and residual quadrupolar couplings (RQCs or ΔνQ), appear in solution‐state NMR when the molecules under study are subjected to a degree of order. The tunable alignment by reversible compression/relaxation of gels (PMMA and p‐HEMA) is an easy, user‐friendly, and very affordable method to measure them. When using this method, a fraction of isotropic NMR signals is observed in the NMR spectra, even at a maximum degree of compression. To explain the origin of these isotropic signals we decided to investigate their physical location inside the NMR tube using deuterium 1D imaging and MRI micro‐imaging experiments. It was observed that after a certain degree of compression the gels start to buckle and they generate pockets of isotropic solvent, which are never eliminated. The amount of buckling depends on the amount of cross‐linker and the length of the gel.  相似文献   

14.
Couplings between protons, whether scalar or dipolar, provide a wealth of structural information. Unfortunately, the high number of 1H‐1H couplings gives rise to complex multiplets and severe overlap in crowded spectra, greatly complicating their measurement. Many different methods exist for disentangling couplings, but none approaches optimum resolution. Here, we present a general new 2D J‐resolved method, PSYCHEDELIC, in which all homonuclear couplings are suppressed in F2, and only the couplings to chosen spins appear, as simple doublets, in F1. This approaches the theoretical limit for resolving 1H‐1H couplings, with close to natural linewidths and with only chemical shifts in F2. With the same high sensitivity and spectral purity as the parent PSYCHE pure shift experiment, PSYCHEDELIC offers a robust method for chemists seeking to exploit couplings for structural, conformational, or stereochemical analyses.  相似文献   

15.
Heteronuclear dipolar decoupling is an essential requirement for extracting structural information from the 13C NMR spectra of liquid crystals. Efficient schemes for heteronuclear dipolar decoupling in such systems are formulated here by supercycling SWf‐TPPM, a sequence introduced recently for this purpose in rotating solids. These sequences are compared with two other commonly used decoupling schemes in liquid‐crystal NMR, SPINAL‐64 and SWf‐TPPM, by analyzing the intensities of various resonances in the proton decoupled 13C spectrum of the liquid‐crystal 4‐n‐pentyl‐4′‐cyanobiphenyl (5CB). The effectiveness of the decoupling programs with respect to experimental parameters such as RF field strength, decoupler offset frequency and phase angle is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Magic‐angle spinning solid‐state NMR spectroscopy has been applied to study the dynamics of CBM3b–Cbh9A from Clostridium thermocellum (ctCBM3b), a cellulose binding module protein. This 146‐residue protein has a nine‐stranded β‐sandwich fold, in which 35 % of the residues are in the β‐sheet and the remainder are composed of loops and turns. Dynamically averaged 1H‐13C dipolar coupling order parameters were extracted in a site‐specific manner by using a pseudo‐three‐dimensional constant‐time recoupled separated‐local‐field experiment (dipolar‐chemical shift correlation experiment; DIPSHIFT). The backbone‐Cα and Cβ order parameters indicate that the majority of the protein, including turns, is rigid despite having a high content of loops; this suggests that restricted motions of the turns stabilize the loops and create a rigid structure. Water molecules, located in the crystalline interface between protein units, induce an increased dynamics of the interface residues thereby lubricating crystal water‐mediated contacts, whereas other crystal contacts remain rigid.  相似文献   

17.
A two‐dimensional liquid‐state NMR experiment cleanly separating chemical shifts and scalar couplings information is introduced. This DIAG experiment takes advantage of a drastic reduction of the spectral window in the indirect dimension to be quickly recorded and of a new non‐equidistant modulation of the selective pulse to improve the sensitivity of the broadband homodecoupling Zangger–Sterk sequence element by one order of magnitude. A simple automatic analysis results in 1D spectra displaying singlets and lists of the scalar couplings for first‐order multiplets. This facilitates the analysis of 1D spectra by resolving multiplets based on their differences in chemical shifts and coupling structures.  相似文献   

18.
Residual quadrupolar couplings contain important structural information comparable with residual dipolar couplings. However, the measurement of sign and size of especially small residual quadrupolar couplings is difficult. Here, we present an extension of the E.COSY principle to spin systems consisting of a Spin 1 coupled to a spin ½ nucleus, which allows the determination of the sign of the quadrupolar coupling of the Spin 1 nucleus relative to the heteronuclear coupling between the spins. The so‐called Q.E.COSY approach is demonstrated with its sign‐sensitivity using variable angle NMR, stretched gels and liquid crystalline phases applied to various CD and CD3 groups. Especially the sign‐sensitive measurement of residual quadrupolar couplings that remain unresolved in conventional deuterium 1D spectra is shown. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The conformational distributions in molecules that form liquid crystalline phases are predicted to depend strongly on orientational order. Results are presented here to test this hypothesis. The mesogen 4‐hexyloxy‐4‐cyanobiphenyl (6OCB) has been studied by NMR spectroscopy in the isotropic phase and in the nematic phase. In the isotropic phase the field‐induced orientational ordering produces small dipolar couplings between 13C and 1H nuclei, which were determined from the 13C spectra. Couplings between 1H nuclei were also obtained using 2D selective refocusing experiments. In the nematic phase, both 1H–1H dipolar couplings and quadrupolar splittings for deuterium nuclei were measured for partially‐deuterated samples. Both proton and deuterium spectra were also obtained for 6OCB in an equimolar mixture with 4‐(ethoxybenzylidene)‐4′‐butylaniline (EBBA). This mixture exhibits SmA and SmB phases. The data obtained from these experiments has been analysed to yield the probability distribution of the conformations in this molecule generated by rotations about bonds. It is found that there is a substantial influence of the orientational order of the molecules on these distributions.  相似文献   

20.
Reaction between the phosphinito bridged diplatinum species [(PHCy2)Pt(μ‐PCy2){κ2P,O‐μ‐P(O)Cy2}Pt(PHCy2)](Pt–Pt) ( 1 ), and (trimethylsilyl)acetylene at 273 K affords the σ‐acetylide complex [(PHCy2)(η1‐Me3SiC≡C)Pt(μ‐PCy2)Pt(PHCy2){κP‐P(OH)Cy2}](Pt–Pt) ( 2 ) featuring an intramolecular π‐type hydrogen bond. Scalar and dipolar couplings involving the POH proton were detected by 2D NMR experiments. Relativistic DFT calculations of the geometry, relative energy, and NMR properties of model systems of 2 confirmed the structural assignment and allowed the energy of the π‐type hydrogen bond to be estimated (ca. 22 kJ mol?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号