首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anab initio potential energy surface (PES) of ArF2 system has been obtained by using MP4 calculation with a large basis set including bond functions. There are two local minimums on the PES: one is T-shaped and the other is L-shaped. The L-shaped minimum is the global minimum with a well depth of -119.62 cm-1 atR = 0.3883nm. The T-shaped minimum has a well depth of -85.93cm-1 atR = 0.3486 nm. A saddle point is found atR = 0.3486 and τ = 61° with the well depth of -61.53 cm-1. The vibrational energy levels have been calculated by using VSCF-CI method. The results show that this PES supports 27 vibrational bound states, and the ground states are two degenerate states assigned to the L-type vibration.  相似文献   

2.
A hydrogen-bonded complex between the hydroxyl radical and acetylene has been stabilized in the reactant channel well leading to the addition reaction and characterized by infrared action spectroscopy in the OH overtone region. Analysis of the rotational band structure associated with the a-type transition observed at 6885.53(1) cm(-1) (origin) reveals a T-shaped structure with a 3.327(5) A separation between the centers of mass of the monomer constituents. The OH (v = 1) product states populated following vibrational predissociation show that dissociation proceeds by two mechanisms: intramolecular vibrational to rotational energy transfer and intermolecular vibrational energy transfer. The highest observed OH product state establishes an upper limit of 956 cm(-1) for the stability of the pi-type hydrogen-bonded complex. The experimental results are in good accord with the intermolecular distance and well depth at the T-shaped minimum energy configuration obtained from complementary ab initio calculations, which were carried out at the restricted coupled cluster singles, doubles, noniterative triples level of theory with extrapolation to the complete basis set limit.  相似文献   

3.
张愚  史鸿运  王伟周 《化学学报》2002,60(6):1011-1016
在用非迭代的三重激发项来校正CCSD的CCSD(T)理论水平下,采用aug-cc- pVQZ基函数对He—HBr的分子间势进行了系统的研究。结果表明:He—HBr以线型结 构存在。在极限基的情况下,复合物两种线型极小点结构He—H—Br和He—Br—H势 阱深分别为28.792 cm~(-1)和35.707 cm~(-1),对应He原子到HBr分子质心的距离 R分别为0.407 nm和0.343 nm。讨论了不同的基函数和理论方法在研究此类弱束缚 态复合物的分子间势时的可靠性及其对结果的影响,同时也给出了热函数的解析形 式。  相似文献   

4.
We report an ab initio intermolecular potential energy surface of the Ar-HCCCN complex using a supermolecular method. The calculations were performed using the fourth-order M?ller-Plesset theory with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ar atom facing the H atom. The T-shaped minimum is the global minimum with the well depth of 236.81 cm(-1). A potential barrier separating the two minima is located at R=5.57 A and theta=20.39 degrees with the height of 151.59 cm(-1). The two-dimensional discrete variable representation was employed to calculate the rovibrational energy levels for Ar-HCCCN. The rovibrational spectra including intensities for the ground state and the first excited intermolecular vibrational state are also presented. The results show that the spectra are mostly b-type (Delta K(a)=+/-1) transitions with weak a-type (Delta K(a)=0) transitions in structure, which are in good agreement with the recent experimental results [A. Huckauf, W. Jager, P. Botschwina, and R. Oswald, J. Chem. Phys. 119, 7749 (2003)].  相似文献   

5.
采用[CCSD(T)]-F12方法和aug-cc-pVTZ基组,同时引入中心键函数(3s3p2d1f1g)构建了Kr-C2H2体系的高精度四维势能面.在构建势能面时考虑了分子间的振动方式及C2H2单体内的ν1对称伸缩和ν3反对称伸缩振动.将计算得到的四维势能面在Q1方向和Q3方向分别做积分得到C2H2单体分别处于振动基态和(ν1,ν3)=(1,1)激发态的平均势能面.计算结果表明,这2个平均势能面均存在2个等价的T型全局极小值和2个等价线性极小值.全局极小值的几何构型位于R=0.41 nm,θ=65.6°/114.4°,势阱深度为151.88 cm-1.对径向部分采用离散变量表象法(DVR),角度部分采用有限基组表象法(FBR),并结合Lanczos循环算法计算了Kr-C2H2的振转能级和束缚态.计算结果表明,复合物在(ν1,ν3)=(1,1)区域的带心位移为-1.48 cm-1,表现为红移,与实验值-1.38 cm-1很接近;计算得到的红外跃迁频率也与实验值相吻合,说明得到的从头算势能面具有高精度.  相似文献   

6.
The authors present a new five-dimensional potential energy surface for H2-CO2 including the Q3 normal mode for the nu3 antisymmetric stretching vibration of the CO2 molecule. The potential energies were calculated using the supermolecular approach with the full counterpoise correction at the CCSD(T) level with an aug-cc-pVTZ basis set supplemented with bond functions. The global minimum is at two equivalent T-shaped coplanar configurations with a well depth of 219.68 cm-1. The rovibrational energy levels for four species of H2-CO2 (paraH2-, orthoH2-, paraD2-, and orthoD2-CO2) were calculated employing the discrete variable representation (DVR) for radial variables and finite basis representation (FBR) for angular variables and the Lanczos algorithm. Our calculations showed that the off-diagonal intra- and intermolecular vibrational coupling could be neglected, and separation of the intramolecular vibration by averaging the total Hamiltonian with the wave function of a specific vibrational state of CO2 should be a good approximation with high accuracy. The calculated band origin shift in the infrared spectra in the nu3 region of CO2 is -0.113 cm-1 for paraH2-CO2 and -0.099 cm-1 for orthoH2-CO2, which agrees well with the observed values of -0.198 and -0.096 cm-1. The calculated rovibrational spectra for H2-CO2 are consistent with the available experimental spectra. For D2-CO2, it is predicted that only a-type transitions occur for paraD2-CO2, while both a-type and b-type transitions are significant for orthoD2-CO2.  相似文献   

7.
Rg-HX分子间势的精确从头计算研究   总被引:3,自引:0,他引:3  
张愚  史鸿运  王伟周 《物理化学学报》2001,17(11):1013-1020
在用非迭代的三重激发项来校正CCSD的CCSD(T)理论水平下,采用aug cc pVQZ基函数对He HF的分子间势进行了系统的研究.结果表明:He HF以线型结构存在.在极限基的情况下,复合物两种线型极小点结构He H F和He F H势阱深分别为46.614 cm-1和25.026 cm-1,对应He原子到HF分子质心的距离Rm分别为0.3149 nm和0.3012 nm.讨论了不同的基函数和理论方法在研究此类弱束缚态复合物的分子间势时的可靠性及其对结果的影响,并研究了HF分子中H-F键长的改变对势能的影响,同时也给出了势函数的解析形式.  相似文献   

8.
The molecular structures of all gold mono- and trihalides and of their dimers have been calculated at the B3LYP, MP2, and CCSD(T) levels of theory by using relativistic pseudopotentials for all atoms except fluorine. Our computations support the experimental observation that the relative stability of the monohalides increases from the fluoride toward the iodide, while the stability trend of the trihalides is the opposite. The potential energy surface (PES) of all gold trihalides has been investigated. These molecules are typical Jahn-Teller systems; the trigonal planar D3h-symmetry geometry does not correspond to the minimum energy structure for any of them. At the same time, the amount and character of their Jahn-Teller distortion changes gradually from AuF3 to AuI3. The minimum energy geometry is a T-shaped structure for AuF3 and AuCl3, with a Y-shaped transition-state structure. For AuI3, the Y-shaped structure lies lower than the T-shaped structure on the PES. For AuBr3 and AuI3, neither of them is the global minimum but instead an L-shaped structure, which lies outside the Jahn-Teller PES. This structure can be considered to be a donor-acceptor system, or a closed-shell interaction, with I2 acting as donor and AuI as acceptor. The dimers of gold monohalides have very short gold-gold distances and demonstrate the aurophilic interaction. The dimers of the trihalides are planar molecules with two bridging halogen atoms.  相似文献   

9.
An accurate and detailed semiempirical intermolecular potential energy surface for (HCl)2 has been determined by a direct nonlinear least-squares fit to 33 microwave, far-infrared and near-infrared spectroscopic quantities using the analytical potential model of Bunker et al. [J. Mol. Spectrosc. 146, 200 (l99l)] and a rigorous four-dimensional dynamical method (described in the accompanying paper). The global minimum (De= -692 cm-1) is located near the hydrogen-bonded L-shaped geometry (R=3.746 angstroms, theta1=9 degrees, theta2=89.8 degrees, and phi=180 degrees). The marked influence of anisotropic repulsive forces is evidenced in the radial dependence of the donor-acceptor interchange tunneling pathway. The minimum energy pathway in this low barrier (48 cm-1) process involves a contraction of 0.1 angstroms in the center of mass distance (R) at the C2h symmetry barrier position. The new surface is much more accurate than either the ab initio formulation of Bunker et al. or a previous semiempirical surface [J. Chem. Phys. 78, 6841 (1983)].  相似文献   

10.
The intermolecular potential surface of He-CH(3)F is investigated through ab initio calculations and microwave and millimeter-wave spectroscopies. The intermolecular potential is calculated at the fourth-order M?ller-Plesset level with a large basis set including bond functions. Three minimums exist, the deepest of which is at the carbon end of the C-F axis and has a depth of 46.903 cm(-1), the second deepest is in a T-shaped position relative to the C-F axis with a depth of 44.790 cm(-1), and the shallowest is at the fluorine end of the C-F axis with a depth of 30.929 cm(-1). The barrier to internal rotation of the CH(3)F subunit about its C-F axis is very low, thus leading to essentially free internal rotation and two separate sets of bound states correlating to ortho-CH(3)F (|K| = 3n) for the ground, or A, internal rotor state upon which this study focuses, and to para-CH(3)F (|K| = 3n +/- 1) for the excited, or E, internal rotor state. Bound-state calculations of the A state performed using two different techniques show the lowest-energy state to have the helium localized in the T-shaped well with an energy of -11.460 cm(-1), while two excited configurations of the A state have the helium localized either in the well at the carbon end ("linear") with an energy of -7.468 cm(-1) or in the well at the fluorine end ("antilinear") with an energy of -4.805 cm(-1). Spectroscopic observations confirm the predicted energy-level structure of the ground and first excited states. Sixteen transitions between 12 distinct energy levels have been observed, including pure rotational transitions of both the T-shaped ground state and the linear excited state, as well as rovibrational transitions between the ground state and the linear excited state. The energy difference between the T-shaped state and the linear state is measured to be 132 374.081(16) MHz. There is significant Coriolis mixing of the ground state J(K(a)K(c)) = 2(20) and the linear J(K) = 2(0) levels which aided in the observation of the T to linear transitions. This mixing and the T to linear energy difference are sensitive probes of the relative well depths of the two lowest minimums and are well predicted by the ab initio potential. Improved agreement between experiment and theory is obtained by morphing the correlation energy of the potential. He-CH(3)F is one of just a few atom-molecule complexes for which the ground-state geometry does not coincide with the global potential minimum.  相似文献   

11.
12.
The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.  相似文献   

13.
The intermolecular potential energy surface (PES) of Ar interacting with the acetylene cation in its (2)Pi(u) ground electronic state is characterized by infrared photodissociation (IRPD) spectroscopy and quantum chemical calculations. In agreement with the theoretical predictions, the rovibrational analysis of the IRPD spectrum of C(2)H(2) (+)-Ar recorded in the vicinity of the antisymmetric CH stretching fundamental (nu(3)) is consistent with a vibrationally averaged T-shaped structure and a ground-state center-of-mass separation of R(c.m.) = 2.86 +/- 0.09 A. The nu(3) band experiences a blueshift of 16.7 cm(-1) upon complexation, indicating that vibrational excitation slightly reduces the interaction strength. The two-dimensional intermolecular PES of C(2)H(2) (+)-Ar, obtained from coupled cluster calculations with a large basis set, features strong angular-radial coupling and supports in addition to a global pi-bound minimum also two shallow side wells with linear H-bound geometries. Bound state rovibrational energy level calculations are carried out for rotational angular momentum J = 0-10 (both parities) employing a discrete variable representation-distributed Gaussian basis method. Effective spectroscopic constants are determined for the vibrational ground state by fitting the calculated rotational energies to the standard Watson A-type Hamiltonian for a slightly asymmetric prolate top.  相似文献   

14.
A new potential energy surface (PES) for the quintet state of rigid O(2)((3)Sigma(g)(-)) + O(2)((3)Sigma(g)(-)) has been obtained using restricted coupled-cluster theory with singles, doubles, and perturbative triple excitations [RCCSD(T)]. A large number of relative orientations of the monomers (65) and intermolecular distances (17) have been considered. A spherical harmonic expansion of the interaction potential has been built from the ab initio data. It involves 29 terms, as a consequence of the large anisotropy of the interaction. The spherically averaged term agrees quite well with the one obtained from analysis of total integral cross sections. The absolute minimum of the PES corresponds to the crossed (D(2d)) structure (X shape) with an intermolecular distance of 6.224 bohrs and a well depth of 16.27 meV. Interestingly, the PES presents another (local) minimum close in energy (15.66 meV) at 6.50 bohrs and within a planar skewed geometry (S shape). We find that the origin of this second structure is due to the orientational dependence of the spin-exchange interactions which break the spin degeneracy and leads to three distinct intermolecular PESs with singlet, triplet, and quintet multiplicities. The lowest vibrational bound states of the O(2)-O(2) dimer have been obtained and it is found that they reflect the above mentioned topological features of the PES: The first allowed bound state for the (16)O isotope has an X structure but the next state is just 0.12 meV higher in energy and exhibits an S shape.  相似文献   

15.
利用脉冲分子束技术, 在305-322 nm范围内研究了1-萘酚(1NP)的共振双光子电离(R2PI)光谱. 1NP分子存在cis和trans两种旋转异构体, 但实验中仅观测到trans异构体的电子振动跃迁光谱, 其S1←S0跃迁的(0-0)带头出现在317.90 nm(即31456 cm-1)位置. 利用光谱选律及ab initio和密度泛函(DFT)计算, 对trans异构体在S1态的振动模进行标识, 得出主要对应于对称性为a'的平面内振动模. 计算显示, cis异构体在电子基态S0的能量较trans异构体高出439 cm-1, 而第一激发能却比trans异构体的低1216 cm-1, 与之相应的实验值分别是220和274 cm-1. 计算数值与实验结果在能量变化趋势上完全一致. 共振双光子电离谱中没有观测到cis异构体的光谱信号, 其原因可归结为分子束的有效冷却效应使得处于基态的cis异构体的布居数密度相对trans异构体极低, 导致cis光谱信号太小而未能被探测到.  相似文献   

16.
The photodissociation of H(2)Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H(2)Te are obtained in C(2v) symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a(0), as well as for the minimum energy path constrained to R(1)=R(2). Asymmetric cuts of potential energy surfaces for excited states (at R(1)=3.14a(0) and theta;=90.3 degrees ) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A('), which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH((2)Pi(1/2))+H((2)S) limit. These theoretical data are in accord with the selectivity toward TeH((2)Pi(1/2)) relative to TeH((2)Pi(3/2)) that has been found experimentally for 355 nm H(2)Te photodissociation. The calculated 3A(')<--XA(') transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A(') vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at approximately 245 nm is caused by excitation to 4A("), which has predominantly 2(1)A(") ((1)B(1) in C(2v) symmetry) character.  相似文献   

17.
Multireference configuration interaction calculations have been carried out for low-lying electronic states of AsH(3). Bending potentials for the nine lowest states of AsH(3) are obtained in C(3v) symmetry for As-H distances fixed at the ground state equilibrium value of 2.850 a(0), as well as for the minimum energy path constrained to R(1) = R(2) = R(3). The calculated equilibrium geometry and bond energy for the X (1)A(1) ground state agree very well with the previous experimental and theoretical data. It is shown that the lowest excited singlet state belongs to the (1)A(1) symmetry (in C(3v)), in contradiction to the previous calculations. This state is characterized by a planar equilibrium geometry. Asymmetric stretch potential energy surface (PES) cuts along the H(2)As-H recoil coordinate (at R(1) = R(2) = 2.850 a(0), θ = 123.9° and 90°) for numerous excited states and two-dimensional PESs for the X and ? states up to the dissociation limits are obtained for the first time. The ? (1)A(1), B(1)E-X (1)A(1) transition moments are calculated as well and used together with the PES data for the analysis of possible photodecay channels of arsine in its first absorption band.  相似文献   

18.
19.
Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar-CH(3)OH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH(3)OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar-C, Ar-O, Ar-H(C), and Ar-H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol(-1), and adding an additional r(-n) term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar-CH(3)OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. The structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol(-1) with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol(-1) smaller than this value. The well depths of the other two minima are within 0.16 kcal mol(-1) of the global minimum. The analytic Ar-CH(3)OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol(-1) of the ab initio values. Combining this Ar-CH(3)OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.  相似文献   

20.
由于O3在大气化学中的重要作用,近年来针对它的实验和理论研究皆较活跃.尽管对O3的高振动激发态已进行过广泛的研究[“],得到过多种由实验光谱定出的势能面[‘,’]或由从头算得到的势能函数【‘],但由于近年来又增加了一些新的高精度的振转光谱实验数据k,’」,而以  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号