首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work, we have developed a novel hybrid two-dimensional counter-current chromatography and liquid chromatography (2D CCC × LC) system for the continuous purification of arctiin from crude extract of Arctium lappa. The first dimensional CCC column has been designed to fractionalize crude complex extract into pure arctiin effluent using a one-component organic/salt-containing system, and the second dimensional LC column has been packed with macroporous resin for on-line adsorption, desalination and desorption of arctiin which was effluent purified from the first CCC dimension. Thus, the crude arctiin mixture has been purified efficiently and conveniently by on-line CCC × LC in spite of the use of a salt-containing solvent system in CCC separation. As a result, high purity (more than 97%) of arctiin has been isolated by repeated injections both using the ethyl acetate–8% sodium chloride aqueous solution and butanol–1% sodium chloride aqueous solution. By contrast with the traditional CCC processes using multi-component organic/aqueous solvent systems, the present on-line CCC × LC process only used a one-component organic solvent and thus the solvent is easier to recover and regenerate. All of used solvents such as ethyl acetate, n-butanol and NaCl aqueous solution are low toxicity and environment-friendly. Moreover, the lower phase of salt-containing aqueous solution used as mobile phase, only contained minor organic solvent, which will save much organic solvent in continuous separation. In summary, our results indicated that the on-line hybrid 2D CCC × LC system using one-component organic/salt-containing aqueous solution is very promising and powerful tool for high-throughput purification of arctiin from fruits of A. lappa.  相似文献   

2.
Predictable scale-up from test tube derived distribution ratios and analytical-scale sample loading optimisation is demonstrated using a model sample system of benzyl alcohol and p-cresol in a heptane:ethyl acetate:methanol:water phase system with the new 18 L Maxi counter-current chromatography centrifuge. The versatility of having a liquid stationary phase with its high loading capacity and flexible operating modes is demonstrated at two different scales by separating and concentrating target compounds using a mixture of caffeine, vanillin, naringenin and carvone using a quasi-continuous technique called intermittent counter-current extraction.  相似文献   

3.
Analytical high-speed counter-current chromatography (HSCCC), a unique liquid-to-liquid separation technology, has an inherent capability to provide perfect fractionation for tracking active ingredients of medicinal herbs, in a quick, efficient, and high-recovery manner. A high throughput screening (HTS) method which utilizes a novel biosensor that selectively detects apoptosis based on the fluorescence resonance energy transfer (FRET) technique, was newly established and proved to be very sensitive in detecting apoptosis induced by various known anticancer drugs. The first combination of both advanced techniques formed an efficient platform for drug discovery and succeeded in quickly identifying the most potent apoptotic constituent of a Chinese herb namely Isodon eriocalyx. The system of n-hexane/ethyl acetate/methanol/water was used as the separation solvent. The solvent ratio was first set at 3:5:3:5 to check the water-soluble part of the crude extract, and then 1:1:1:1 was used to isolate the target compounds. The active fraction was tracked and purified continuously using HSCCC which was guided by the apoptosis detection at gradually decreased drug concentrations. As a result, the most potent apoptosis inducer in this herb was discovered by analytical HSCCC equipped with a 16 ml mini-coil column, using less than 50 ml diphase solvent, from about 50 mg active fraction. It was identified as eriocalyxin B, a well-known antitumor natural product, by NMR analysis of the HSCCC purified fraction.  相似文献   

4.
Three techniques (liquid–liquid extraction, packed bed adsorption and expanded bed adsorption) have been compared for the purification of flavonoids from the leaves of Ginkgo biloba L. A crude Ginkgo extract was obtained by refluxing with ethanol for 3 h. The yield of flavonoids achieved by this crude extraction was about 19% (w/w) and the purity of flavonoids in the concentrated extract was between 1.9 and 2.3% (w/w). The crude extract was then dissolved in deionized water and centrifuged where necessary to prepare clarified feedstock for further purification. For the method using liquid–liquid extraction with ethyl acetate, the purity, concentration ratio and yield of flavonoids were 25.4–31.0%, 16–18 and >98%, respectively. For the method using packed bed adsorption, Amberlite XAD7HP was selected as the adsorbent and clarified extract was used as the feedstock. The dynamic adsorption breakthrough curves and elution profiles were measured. For a feedstock containing flavonoids at a concentration of 0.25 mg/mL, the appropriate loading volume to reach a 5% breakthrough point during the adsorption stage was estimated to be 550–600 mL for a packed bed of volume 53 mL and a flow rate of 183 cm/h. The results from the elution stage indicated that the majority of impurities were eluted by ethanol concentrations of 40% (v/v) or below and efficient separation of flavonoids from the impurities could be achieved by elution of the flavonoids with 50–80% ethanol reaching an average purity of ∼25%. The recovery yield of flavonoids using the packed bed purification method was about 60% of the flavonoids present in the clarified feedstock (corresponding to around 30% for the total flavonoids in the unclarified crude extract). For the method using expanded bed adsorption also conducted with Amberlite XAD7HP as the adsorbent, the optimal operation conditions scouted during the packed bed experiments were used but unclarified crude extract could be loaded directly into the column. For an expanded bed with a settled bed height of 30 cm, the loss of flavonoids in the column flow-through was about 30%. The two-step elution protocol again proved to be effective in separating the adsorbed impurities and flavonoids. More than 96% of the bound impurities were completely removed by 40% ethanol in the first elution stage and less than 4% remained in the final product eluted by 90% ethanol in the second elution stage. Also, ∼74% of the adsorbed flavonoids on column (corresponding to 51% of the total flavonoids in the unclarified feedstock) were recovered in the product. In addition to higher recovery yield, the average process time to obtain the same amount of product was decreased in the expanded bed adsorption (EBA) process. The results suggest that the adoption of EBA procedures can greatly simplify the process flow sheet and in addition reduce the cost and time to purify flavonoids from Ginkgo biloba. These results clearly demonstrate the potential for the use of EBA to purify pharmaceuticals from plant sources.  相似文献   

5.
An on-line comprehensive two-dimensional preparative liquid chromatography system was developed for preparative separation of minor amount components from complicated natural products. Medium-pressure liquid chromatograph (MPLC) was applied as the first dimension and preparative HPLC as the second one, in conjunction with trapping column and makeup pump. The performance of the trapping column was evaluated, in terms of column size, dilution ratio and diameter-height ratio, as well as system pressure from the view of medium pressure liquid chromatograph. Satisfactory trapping efficiency can be achieved using a commercially available 15 mm × 30 mm i.d. ODS pre-column. The instrument operation and the performance of this MPLC × preparative HPLC system were illustrated by gram-scale isolation of crude macro-porous resin enriched water extract of Rheum hotaoense. Automated multi-step preparative separation of 25 compounds, whose structures were identified by MS, 1H NMR and even by less-sensitive 13C NMR, could be achieved in a short period of time using this system, exhibiting great advantages in analytical efficiency and sample treatment capacity compared with conventional methods.  相似文献   

6.
This paper builds on previous modelling research with short single layer columns to develop rapid methods for optimising high-performance counter-current chromatography at constant stationary phase retention. Benzyl alcohol and p-cresol are used as model compounds to rapidly optimise first flow and then rotational speed operating conditions at a preparative scale with long columns for a given phase system using a Dynamic Extractions Midi-DE centrifuge. The transfer to a high value extract such as the crude ethanol extract of Chinese herbal medicine Millettia pachycarpa Benth. is then demonstrated and validated using the same phase system. The results show that constant stationary phase modelling of flow and speed with long multilayer columns works well as a cheap, quick and effective method of optimising operating conditions for the chosen phase system—hexane–ethyl acetate–methanol–water (1:0.8:1:0.6, v/v). Optimum conditions for resolution were a flow of 20 ml/min and speed of 1200 rpm, but for throughput were 80 ml/min at the same speed. The results show that 80 ml/min gave the best throughputs for tephrosin (518 mg/h), pyranoisoflavone (47.2 mg/h) and dehydrodeguelin (10.4 mg/h), whereas for deguelin (100.5 mg/h), the best flow rate was 40 ml/min.  相似文献   

7.
Recently, intermittent counter-current extraction (ICcE) has been developed and shown its advantage in improving resolution between targeted compounds. However, how to choose suitable parameters to increase the throughput has not been systematically studied yet. In present work, we first calculated theoretically the conditions to carry out ICcE elution mode. Then, honokiol and magnolol were separated as model compounds using ICcE elution mode to confirm our conclusion. After parameters like sample concentration and sample feed were optimized in analytical high-performance counter-current chromatography (HPCCC), the separation process was scaled up to preparative HPCCC successfully. 12.8 g honokiol and 16.1 g magnolol were separated from 30 g mixture with purities of 98.6% and 93.7%. And the throughput of target isolation of ICcE elution mode was at least 3.75× higher than isocratic elution mode with the same HPCCC instruments. Our results confirmed our theory calculation and demonstrated the enormous potential of ICcE on preparative separation of binary mixture.  相似文献   

8.
An analytical scheme to determine groups of petroleum hydrocarbon compounds in crude oil was developed and used for the qualitative and quantitative characterization of crude oil samples from the Shengli oilfield, the second largest oilfield in China. Crude oil samples were fractionated and analyzed by thin-layer chromatography with flame ionization detection (TLC-FID). Relative standard deviation (RSD) values for retention time, peak height and half peak width were less than 5.2% for all classes of compounds, based on nine independent replicates. The crude oil light fraction was further analyzed by GC–MS and the majority of identified compounds were methyl- or hydro-derivatives of long-chain hydrocarbons and aromatic compounds. The external standard method used in the present study can lower detection limits of petroleum hydrocarbon compound classes to 20.0 mg L−1, and the crude oil concentration in the range of 30 and 35,000 mg L−1 has a high linear correlation (r2 > 0.97, P < 0.05) with peak area. A comparison between elution chromatography (EC) and TLC-FID regarding the recovery of petroleum hydrocarbon compounds was carried out with aged crude oil contaminated soils of 50, 80, 200 and 300 mg g−1. The tested TLC-FID method showed a 10% higher recovery for total extractable materials than the reference EC method. The calibration factor was fraction-dependent and varied with the recovery rate of TLC/EC. Regarding the tested extraction procedures, accelerated solvent extraction (ASE) had a higher extraction efficiency for crude oil contaminated soils than Soxhlet and ultrasonic extractions.  相似文献   

9.
Yu S  Geng J  Zhou P  Wang J  Feng A  Chen X  Tong H  Hu J 《Analytica chimica acta》2008,611(2):173-181
A new hybrid organic-inorganic monolithic column for efficient deoxyribonucleic acid (DNA) extraction was prepared in situ by polymerization of N-(β-aminoethyl)-γ-aminopropyltriethoxysilane (AEAPTES) and tetraethoxysilane (TEOS). The main extraction mechanism was based on the Coulombic force between DNA and the amino silica hybrid monolithic column. DNA extraction conditions, such as pH, ion concentration and type, and loading capacity, were optimized online by capillary electrophoresis with laser-induced fluorescence detection. Under optimal condition, a 6.0-cm monolithic column provided a capacity of 48 ng DNA with an extraction efficiency of 74 ± 6.3% (X ± RSD). The DNA extraction process on this monolithic column was carried out in a totally aqueous system for the successful purification of DNA and removal of proteins. The PBE2 plasmid could be extracted from Bacillus subtilis (B. subtilis) crude lysate within 25 min, and the purified DNA was suitable for the amplification of a target fragment by polymerase chain reaction. This study demonstrates a new attractive solid-phase support for DNA extraction to meet the increasingly miniaturized and automated trends of genetic analyses.  相似文献   

10.
Although the medicinal plant and food Nigella glandulifera Freyn has been researched for decades, isobenzofuranones have never been isolated before. Two isobenzofuranone derivatives and two saponins were successfully separated and purified from seeds of N. glandulifera Freyn by high-speed counter-current chromatography (HSCCC) with the optimized two-phase solvent system, n-hexane-ethyl acetate–methanol–water (7:3:5:5, v/v). Salfredin B11 (22.1 mg, HPLC purity 95.3%), 5, 7-dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one (18.9 mg, HPLC purity 97.3%) and crude sample 2 (555 mg) were separated from 600 mg of ethyl acetate extract of N. glandulifera Freyn. Following a cleaning-up step by chromatography on Sephadex LH-20, hederagenin (12 mg) and 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin (45 mg) were separated from sample 2. All of the fractions before peak II were collected and subjected to a Sephadex LH-20 column and eluted by methanol, two of triterpene saponins (12 mg of hederagenin and 45 mg of 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin) were isolated. The structures of peak fractions were identified by IR, electron ionization MS, 1H NMR and 13C NMR. 5, 7-Dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one was isolated for the first time from higher plant and salfredin B11 was isolated for the first time in this plant.  相似文献   

11.
The proanthocyanidin extract from tea (Camellia sinensis) leaves was purified for the further study of the biological role of proanthocyanidins in blister blight leaf disease of tea, which is caused by the fungus Exobasidium vexans. An aqueous acetone extract of proanthocyanidins prepared from healthy tea leaves was partially purified using Sephadex LH-20 chromatography. The crude proanthocyanidin extract obtained was fractionated with high-speed counter-current chromatography (HSCCC) using the solvent system n-hexane–EtOAc–MeOH–water (1:5:1:5). The purity of the each isolated fraction after a single HSCCC run was evaluated by high-performance liquid chromatography (HPLC). Seven fractions of high purity were isolated. The identity of the compound present in each fraction isolated was established using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. Five proanthocyanidins and two flavanol digallates, (−)-epigallocatechin digallate (EGCDG) and (−)-epicatechin digallate (ECDG) were isolated. Comparison of spectral data of the proanthocyanidins isolated with those previously reported indicated that all five were known B-type proanthocyanidins with 2,3-cis stereochemistry in both the upper (u-unit) and the terminal (t-unit) units, and 4R configuration of the C-ring in the u-unit. The proanthocyanidins were established to be dimers composed of (−)-epigallocatechin gallate (EGCG), (−)-epicatechin gallate (ECG) and (−)-epiafzelechin gallate (EAG) units with the following structures: EGCG-(4β → 6)-EGCG, ECG-(4β → 6)-EGCG, EGCG-(4β → 6)-ECG, EAG-(4β → 6)-EGCG, ECG-(4β → 6)-ECG by analysis of spectral data. Therefore HSCCC offers a powerful method for the separation of a group of closely related naturally occurring compounds.  相似文献   

12.
A combinative method using high-speed counter-current chromatography (HSCCC) and thin layer chromatography (TLC) as an antioxidant autographic assay was developed to separate antioxidant components from the fruits of Psoralea corylifolia. Under the guidance of TLC bioautography, eight compounds including five flavonoids and three coumarins were successfully separated from the fruits of P. corylifolia by HSCCC with an optimized two-phase solvent system, n-hexane–ethyl acetate–methanol–water (1:1.1:1.3:1, v/v/v/v). The separation produced 5.91 mg psoralen, 6.26 mg isopsoralen, 3.19 mg psoralidin, 0.92 mg corylifol A, and 2.43 mg bavachinin with corresponding purities of 99.5, 99.8, 99.4, 96.4, and 99.0%, as well as three sub-fractions, in a single run from 250 mg ethyl acetate fraction of P. corylifolia extract. Following an additional clean-up step by preparative TLC, 0.4 mg 8-prenyldaidzein (purity 91.7%), 4.18 mg neobavaisoflavone (purity 97.4%) and 4.36 mg isobavachalcone (purity 96.8%) were separated from the three individual sub-fractions. The structures of the isolated compounds were identified by 1H NMR and 13C NMR. The results of antioxidant activity estimation by electron spin resonance (ESR) method showed that psoralidin was the most active antioxidant with an IC50 value of 44.7 μM. This is the first report on simultaneous separation of eight compounds from P. corylifolia by HSCCC.  相似文献   

13.
Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-13C4 and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d9-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r2 > 0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50 pmol to 100 fmol/3 × 107 cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites.  相似文献   

14.
Several kinds of resins were investigated in the first step and D101 macroporous resin was selected for cleaning-up naringin (NAR), a major flavonoid glycoside from Fructus aurantii. In the subsequent column chromatography, 10% aqueous ethanol was first used to elute the column to remove the undesired constituents and 70% aqueous ethanol was used to elute the target. The content of NAR was 57.1% with 95.7% recovery in this process. In the second step, the obtained crude sample was directly isolated by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of ethyl acetate–n-butanol–water at a volume ratio of 2: 0.8: 3.2 (v/v/v), and 331 mg NAR with 98.3% purity was obtained from 600 mg crude extract in only one run. The recovery of the compound in this step was 95.0%. Thus, the total recovery of NAR was 90.9% after the two step purification. The established protocol for large-scale isolation and separation of NAR with high purity and recovery from F. aurantii was simple, efficient, and suitable for pharmace- utical and commercial use.  相似文献   

15.
A large-scale purification of salvianolic acid B from Salvia miltiorrhiza Bunge is presented. The method development began with selection of the solvent system, then optimization of the operating parameters and ended up with linear scale-up from an analytical to a preparative instrument. Three factors were used for method optimization and scale-up estimation: purity, process throughput and process efficiency. Preparation was achieved using a two-phase solvent system comprising hexane–ethyl acetate–methanol–acetic acid–water (1:5:1.5:0.00596:5, v/v). This preparation yielded 475 mg of salvianolic acid B with a purity of 96.1% from 1.5 g of crude extract. The process throughput of crude was 2.23 g/h while process efficiency per gram of target compound was 0.769 g/h. Two factors—process environmental risk factor and process evaluation factor were used for evaluation of the separation process.  相似文献   

16.
GuiDi Yang  JinHua Xu  GuoNan Chen 《Talanta》2010,80(5):1913-1918
A microwave-assisted extraction used to extract trace triorganotin from aquatic organisms and a sensitive analytical method for the determination of ultratrace triorganotin (namely trimethyltin, triethyltin, tripropyltin and tributyltin) with capillary electrophoresis-inductively coupled plasma mass spectrometry were firstly described in this study. The extraction method is simple, effective and can be used to extract trace triorganotin in aquatic organisms within several min. The analytical method has a much lower detection limit of 0.2-0.7 ng Sn/mL for triorganotin compounds, and can be used to determine trace triorganotin in aquatic organisms directly without any derivatization and preconcentration. Using above methods, we have successfully determined trimethyltin, triethyltin, tripropyltin and tributyltin in dried Mya arenaria Linnaeus and Corbicula fluminea within 17 min with a recovery of 93-104% and a RSD (relative standard deviation, n = 6) of 2-5%. Our results showed that dried M. arenaria Linnaeus contained an extremely high tributyltin of 5.1 μg Sn/g dried weight, indicating that it may be a good biomarker for the organotin pollution in ocean.  相似文献   

17.
We developed a new analysis method for the nine N-methyl carbamate pesticides in fruits and vegetables using ESI LC/MS/MS with direct sample injection into a short column. After extraction of the pesticides with ethyl acetate from sample, the extract is evaporated to dryness and redissolved in ultra pure water before injection into LC/MS/MS. The method needs no cleanup steps. The average recoveries from fruits and vegetables fortified at the level of 0.01 μg/g ranged from 56.0 to 119.1% with the coefficients of variation ranging from 0.2 to 7.6% for intra-day (n = 5 × 3 days) and from 0.8 to 18.4% for inter-day (n = 15). At the fortified level of 0.5 μg/g, the recoveries ranged from 67.7 to 119.3% with the coefficients of variation ranging from 0.5 to 7.8% for intra-day (n = 5 × 3 days) and from 0.9 to 14.8% for inter-day (n = 15). The method is considered to be satisfactory for the monitoring of the carbamate pesticide residues in fruits and vegetables, suggesting that the present method is applicable to other pesticide residues in foods.  相似文献   

18.
In this study, a simple and reliable HPLC method for the qualitative and quantitative analysis of cardiac glycosides in Digitalis lanata Ehrh. raw material was developed and applied to healthy and phytoplasma-infected plants. The target analytes cover a broad range of secondary metabolites, including primary, secondary and tertiary glycosides and the corresponding aglycones. The sample preparation was carried out by sonication of the plant material with 70% (v/v) aqueous methanol at room temperature, followed by reversed-phase solid-phase extraction purification from interfering pigments. The HPLC analyses were performed on a Symmetry C18 column (75 mm × 4.6 mm I.D., 3.5 μm), with a gradient elution composed of water and acetonitrile, at a flow rate of 1.0 mL/min. The column temperature was set at 20 °C and the photodiode array detector monitored the eluent at 220 nm. The method was validated with respect to ICH guidelines and the validation parameters were found to be highly satisfactory. The application of the method to the analysis of D. lanata leaves indicated that air-drying was the optimum method for raw material processing when compared with freeze-drying. The analysis of healthy and phytoplasma-infected plants demonstrated that the secondary metabolite mainly affected by the pathogen presence was lanatoside C (153.2 μg/100 mg versus 76.1 μg/100 mg). Considering the importance of D. lanata plant material as source of cardiac glycosides, the developed method can be considered suitable for the phytochemical analysis and for the quality assurance of D. lanata used for pharmaceutical purpose.  相似文献   

19.
This paper compares two analytical methods for determining levels of 90 volatile organic compounds (VOCs) commonly found in industrial and urban atmospheres. Both methods are based on two official methods for determining benzene levels and involve collecting samples by active adsorptive enrichment on solid sorbents. The first method involves solvent extraction and uses activated charcoal as a sorbent. After sampling, the sorbent is extracted with 1 mL of carbon disulfide and then 1 μL of the extract is analysed in a GC-MS. The second method involves thermal desorption (TD) and uses Tenax TA and Carbograph 1TD as sorbents, which allows the whole sample to be analysed. In general, the thermal desorption method showed the best repetitivity and recovery and the lowest limit of detection and quantification for all target compounds. Because of its lower sensitivity, the solvent extraction method needs the preconcentration of large sample volumes of air (720 L vs. 2.64 L for the thermal desorption method) to yield similar limits of detection.The performance of both methods in real samples was tested in a location near to a petrochemical complex. The results of the 24-h samples for the solvent extraction method were compared with the average of 12 2-h samples for the TD method. In some cases, both methods found differences in the VOC concentrations, especially in those compounds whose concentrations fluctuate significantly during the day.  相似文献   

20.
A simple, rapid, and sensitive method for the quantitative monitoring of five sulfonamide antibacterial residues (SAs) in milk was developed by stir bar sorptive extraction (SBSE) coupling to high performance liquid chromatography with diode array detection. The analytes were concentrated by SBSE based on poly (vinylimidazole–divinylbenzene) monolithic material as coating. The extraction procedure was very simple, milk was diluted with water then directly sorptive extraction without elimination of fats and protein in samples was required. To achieve optimum extraction performance for SAs, several parameters, including extraction and desorption time, desorption solvent, ionic strength and pH value of sample matrix were investigated. Under the optimized experimental conditions, low detection limits (S/N = 3) quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 1.30–7.90 ng/mL and 4.29–26.3 ng/mL from spiked milk, respectively. Good linearities were obtained for SAs with the correlation coefficients (R2) above 0.996. Finally, the proposed method was successfully applied to the determination of SAs compounds in different milk samples and satisfied recoveries of spiked target compounds in real samples were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号