首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
Eight new iron(III) amine-bis(phenolate) complexes are reported. The reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L1, 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L2, and 2-methoxyethylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L3, 2-methoxyethylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L4 produces the trigonal bipyramidal iron(III) complexes, L1FeCl (1a), L1FeBr (1b), L2FeCl (2a), L2FeBr (2b), L3FeCl (3a), L3FeBr (3b), L4FeCl (4a), and L4FeBr (4b). All complexes have been characterized using electronic absorption spectroscopy, cyclic voltammetry and room temperature magnetic measurements. Variable temperature magnetic data were acquired for complexes 2b, 3a and 4b. Variable temperature M?ssbauer spectra were obtained for 2b, 3a and 4b. Single crystal X-ray molecular structures have been determined for proligand H(2)L4 and complexes 1b, 2b, and 4b.  相似文献   

2.
Reaction of n-propylamino-N,N-bis(2-methylene-4-tert-butyl-6-methylphenol), H(2)L1, n-propylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L2, and benzylamino-N,N-bis(2-methylene-4-tert-butyl-6-methylphenol), H(2)L3, with anhydrous ferric chloride in the presence of base yields the products, [FeL1(μ-Cl)](2) (1), [FeL2(μ-Cl)](2) (2) and [FeL3(μ-Cl)](2) (3). In the solid state, these complexes exist as chloride-bridged dimers giving distorted trigonal bipyramidal iron(III) ions. Reaction of H(2)L1 with FeBr(3), however, results in the formation of a tetrahedral iron(III) complex possessing two bromide ligands. The amine-bis(phenolate) ligand is bidentate in this complex and bonds to the iron(III) ion via the phenolate O-donors. The central amine donor is protonated, resulting in a quaternized ammonium fragment and the iron(III) centre possesses a negative formal charge. As a result, this complex is zwitterionic and formulated as FeBr(2)L1H (4). Complex 1 is an air-stable, non-hygroscopic, single-component catalyst for C-C cross-coupling of aryl Grignard reagents with primary and secondary alkyl halides, including chlorides. Good to excellent yields of cross-coupled products are obtained in diethyl ether at room temperature. In some cases where low yields are obtained under these conditions, the use of microwave-assisted heating of the reaction mixture can improve yields.  相似文献   

3.
Several iron(III) complexes incorporating diamidoether ligands are described. The reaction between [Li(2)[RN(SiMe(2))](2)O] and FeX(3) (X=Cl or Br; R=2,4,6-Me(3)Ph or 2,6-iPr(2)Ph) form unusual ate complexes, [FeX(2)Li[RN(SiMe(2))](2)O](2) (2, X=Cl, R=2,4,6-Me(3)Ph; 3, X=Br, R=2,4,6-Me(3)Ph; 4, X=Cl, R=2,6-iPr(2)Ph) which are stabilized by Li-pi interactions. These dimeric iron(III)-diamido complexes exhibit magnetic behaviour characteristic of uncoupled high spin (S= 5/2 ) iron(III) centres. They also undergo halide metathesis resulting in reduced iron(II) species. Thus, reaction of 2 with alkyllithium reagents leads to the formation of iron(II) dimer [Fe[Me(3)PhN(SiMe(2))](2)O](2) (6). Similarly, the previously reported iron(III)-diamido complex [FeCl[tBuN(SiMe(2))](2)O](2) (1) reacts with LiPPh(2) to yield the iron(II) dimer [Fe[tBuN(SiMe(2))](2)O](2) but reaction with LiNPh(2) gives the iron(II) product [Fe(2)(NPh(2))(2)[tBuN(SiMe(2))](2)O] (5). Some redox chemistry is also observed as side reactions in the syntheses of 2-4, yielding THF adducts of FeX(2): the one-dimensional chain [FeBr(2)(THF)(2)](n) (7) and the cluster [Fe(4)Cl(8)(THF)(6)]. The X-ray crystal structures of 3, 5 and 7 are described.  相似文献   

4.
The reaction between trisdiolatotungsten(VI) complex [W(eg)(3)] (1) (eg = 1,2-ethanediolato dianion) and phenolic ligand precursor methylamino-N,N-bis(2-methylene-4,6-dimethylphenol) (H(2)L(Me)) or methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol) (H(2)L(tBu)) affords monomeric oxotungsten complex [WO(eg)(L(Me))] (2) or [WO(eg)(L(tBu))] (3), respectively. These complexes react further with chlorinating reagents, which leads to the displacement of ethanediolato ligands from the complex units and formation of cis and trans isomers of the corresponding dichloro complexes [WOCl(2)(L(Me))] (4) and [WOCl(2)(L(tBu))] (5), respectively. Identical dichloro complexes were also prepared by the reaction between the above-mentioned phenolic ligand precursors and [WOCl(4)]. Molecular structures of 3, cis-4, trans-4, and cis-5 were verified by X-ray crystallography. Complexes 2-5 can be activated by Et(2)AlCl to catalyze ring-opening metathesis polymerization of norbornene.  相似文献   

5.
By the reaction of new donor molecules, bis(ethylenedithio)tetrathiafulvalenoquinone(-thioquinone)-1,3-dithiolemethides [BEDT-TTFVO (1) and BEDT-TTFVS (2)] with FeX3 (X = Cl, Br) in CS2/CH3CN, 1:1 salts of 1 or 2 with an FeX4- ion (1.FeX4 and 2.FeX4) were obtained as black needle crystals. Their crystal structures are very similar to each other, in which the donor molecules are strongly dimerized and the dimers construct a one-dimensional uniform chain along the a axis, while the FeX4- ions are located at an open space surrounded by the neighboring donor molecules and also construct a one-dimensional uniform chain along the a axis. There are close contacts between the donor molecules and the FeX4- ions and significant differences in the contact distances among the four salts. All of the salts are semiconductors with room-temperature electrical conductivities of 10-4-10-2 S cm-1. The Fe(III) d spins of the FeX4- ions are subject to dominant ferromagnetic interaction through the participation of one of the singlet pi spins to form a short-range ferromagnetic d-spin chain. Such neighboring chains interact antiferromagnetically with each other through the singlet pi spins and are ordered at 1.0, 2.4, and 0.8 K for 1.FeCl4, 1.FeBr4, and 2.FeCl4, respectively. On the other hand, the antiferromagnetic ordering occurred with some canted angle at 1.9 K to leave a small magnetization for 2.FeBr4.  相似文献   

6.
Treatment of U(acac)4 with the hexadentate Schiff base H2L(i) gave the [UL(i)2] complexes 1-4 [H2L1=N,N'-bis(3-methoxysalicylidene)-2-methyl-1,2-propanediamine, H2L2=N,N'-bis(3-methoxysalicylidene)-1,2-phenylenediamine, H2L3=N,N'-bis(3-methoxysalicylidene)-2-aminobenzylamine and H2L4=N,N'-bis(3-methoxysalicylidene)-2,2-dimethyl-1,3-propanediamine for 1-4, respectively]. The [U(L(i))(acac)2] compounds could not be isolated because of their ready disproportionation into [UL(i)2] and U(acac)4. Compounds 2 and 4 adopt a meridional configuration in the solid state and in solution, while exists in solution as the two equilibrating meridional and sandwich isomers and crystallizes in the meridional isomeric form. Reaction of U(acac)4 with H4L5 afforded the expected compound [U(H2L5)(acac)2] (5) [H4L5=N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine] but, in the presence of H4L6 and H4L7, U(acac)4 was transformed in a serendipitous and reproducible manner into the tri- and tetranuclear U(IV) complexes [U3(L6)(HL6)2(acac)2] (6) and [U4(HL7)4(H2L7)2] (7) [H4L6=N,N'-bis(3-hydroxysalicylidene)-1,2-phenylenediamine and H4L7=N,N'-bis(3-hydroxysalicylidene)-2-aminobenzylamine]. The crystal structures of 6.3thf and 7.5thf show the assembling role of the Schiff-base ligands.  相似文献   

7.
Four new iron(III) complexes of the bis(phenolate) ligands N,N-dimethyl-N',N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L1)], N,N-dimethyl-N',N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L2)], N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L3)], and N,N'-dimethyl-N,N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L4)] have been isolated and studied as structural and functional models for the intradiol-cleaving catechol 1,2-dioxygenases (CTD). The complexes [Fe(L1)Cl] (1), [Fe(L2)(H2O)Cl] (2), [Fe(L3)Cl] (3), and [Fe(L4)(H2O)Cl] (4) have been characterized using absorption spectral and electrochemical techniques. The single-crystal X-ray structures of the ligand H2(L1) and the complexes 1 and 2 have been successfully determined. The tripodal ligand H2(L1) containing a N2O2 donor set represents the metal-binding region of the iron proteins. Complex 1 contains an FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. While two phenolate oxygens and an amine nitrogen constitute the trigonal plane, the other amine nitrogen and chloride ion are located in the axial positions. In contrast, 2 exhibits a rhombically distorted octahedral coordination geometry for the FeN2O3Cl chromophore. Two phenolate oxygen atoms, an amine nitrogen atom, and a water molecule are located on the corners of a square plane with the axial positions being occupied by the other nitrogen atom and chloride ion. The interaction of the complexes with a few monodentate bases and phenolates and differently substituted catechols have been investigated using absorption spectral and electrochemical methods. The effect of substituents on the phenolate rings on the electronic spectral features and FeIII/FeII redox potentials of the complexes are discussed. The interaction of the complexes with catecholate anions reveals changes in the phenolate to iron(III) charge-transfer band and also the appearance of a low-energy catecholate to iron(III) charge-transfer band similar to catechol dioxygenase-substrate complexes. The redox behavior of the 1:1 adducts of the complexes with 3,5-di-tert-butylcatechol (H2DBC) has been also studied. The reactivities of the present complexes with H2DBC have been studied and illustrated. Interestingly, only 2 and 4 catalyze the intradiol-cleavage of H2DBC, the rate of oxygenation being much faster for 4. Also 2, but not 4, yields an extradiol cleavage product. The reactivity of the complexes could be illustrated not on the basis of the Lewis acidity of the complexes alone but by assuming that the product release is the rate-determining phase of the catalytic reaction.  相似文献   

8.
Treatment of UCl4 with the hexadentate Schiff bases H2Li in thf gave the expected [ULiCl2(thf)] complexes [H2Li=N,N'-bis(3-methoxysalicylidene)-R and R = 2,2-dimethyl-1,3-propanediamine (i= 1), R = 1,3-propanediamine (i= 2), R = 2-amino-benzylamine (i= 3), R = 2-methyl-1,2-propanediamine (i= 4), R = 1,2-phenylenediamine (i= 5)]. The crystal structure of [UL4Cl2(thf)] (4) shows the metal in a quite perfect pentagonal bipyramidal configuration, with the two Cl atoms in apical positions. Reaction of UCl4 with H4Li in pyridine did not afford the mononuclear products [U(H2Li)Cl2(py)x] but gave instead polynuclear complexes [H4Li=N,N'-bis(3-hydroxysalicylidene)-R and R = 1,3-propanediamine (i= 6), R = 2-amino-benzylamine (i= 7) or R = 2-methyl-1,2-propanediamine (i= 8)]. In the presence of H4L6 and H4L7 in pyridine, UCl4 was transformed in a serendipitous and reproducible manner into the tetranuclear U(iv) complexes [Hpy]2[U4(L6)2(H2L6)2Cl6] (6a) and [Hpy]2[U4(L7)2(H2L7)2Cl6][U4(L7)2(H2L7)2Cl4(py)2] (7), respectively. Treatment of UCl4 with [Zn(H2L6)] led to the formation of the neutral compound [U4(L6)2(H2L6)2Cl4(py)2] (6b). The hexanuclear complex [Hpy]2[U6(L8)4Cl10(py)4] (8) was obtained by reaction of UCl4 and H4L8. The centrosymmetric crystal structures of 6a.2HpyCl.2py, 6b.6py, 7.16py and 8.6py illustrate the potential of Schiff bases as associating ligands for the design of polynuclear assemblies.  相似文献   

9.
[Fe(3)(μ(3)-O)(μ-OAc)(6)(py)(3)][FeBr(4)](2)[py·H], complex (1), (OAc is acetate) was prepared from the reaction of FeBr(3) with pyridine in 1.2 molar aqueous HBr and 2.4 molar aqueous CH(3)COOH. Recrystallization of 1 in acetonitrile produced the [Fe(3)(μ(3)-O)(μ-OAc)(6)(py)(3)][FeBr(4)] complex (2). Both complexes were characterized by IR and (1)H NMR spectroscopies and their structures were studied using the single-crystal diffraction method. There is a lack of thorough characterization of the titled compounds in solution. Paramagnetic (1)H NMR is introduced as a good probe for the characterization of a family of titled compounds in solution when the L ligand coordinated to iron varies as: CH(3)OH, CH(3)CN, DMSO, H(2)O, py and acetone.  相似文献   

10.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

11.
A series of novel polyiron species have been prepared from the reaction of iron chloride with the 2,5-disubstituted pyridines H2L(n) (H2L1) = N,N'-bis(n-butylcarbamoyl)pyridine-2,6-dicarboxamide; H2L2 = N,N'-bis(n-ethylcarbamoyl)pyridine-2,6-dicarboxamide). By small modifications of the experimental conditions under which the reactions are carried out, it has been possible to prepare the quadruply stranded diiron(II) complex [Fe2(mu-H2L1)4(mu-Cl)2][FeCl4]2 (1), the metallamacrocycle [Fe2(mu-H2L1)2(THF)4Cl2][FeCl4]2 (2), the hexairon(III) compound [Fe6(L1)2(mu-OMe)6(mu4-O)2Cl4] (3), and the mixed-valence trinuclear iron complexes [Fe3(L(n))3(mu3-O)] (n = 1, 4; n = 2, 5). The X-ray crystal structures of 3 and 5 and magnetic studies for all the compounds are herein presented. Interestingly, the structural analysis of 5 at room temperature indicates that one of the iron centers is Fe(III) while the other two have an average valence state between Fe(II) and Fe(III). The five complexes herein presented demonstrate the great versatility that the new ligand has as a building block for the formation of supramolecular coordination assemblies.  相似文献   

12.
Reactions of Fe[N(SiMe(3))(2)](2) with 1 and 2 equiv of Ph(3)SiSH in hexane afforded dinuclear silanethiolato complexes, [Fe(N(SiMe(3))(2))(mu-SSiPh(3))](2) (1) and [Fe(SSiPh(3))(mu-SSiPh(3))](2) (2), respectively. Various Lewis bases were readily added to 2, generating mononuclear adducts, Fe(SSiPh(3))(2)(L)(2) [L = CH(3)CN (3a), 4-(t)BuC(5)H(4)N (3b), PEt(3) (3c), (LL) = tmeda (3d)]. From the analogous reactions of M[N(SiMe(3))(2)](2) (M = Mn, Co) and [Ni(NPh(2))(2)](2) with Ph(3)SiSH in the presence of TMEDA, the corresponding silanethiolato complexes, M(SSiPh(3))(2)(tmeda) [M = Mn (4), Co (5), Ni (6)], were isolated. Treatment of 3a with (PPh(4))(2)[MoS(4)] or (NEt(4))(2)[FeCl(4)] resulted in formation of a linear trinuclear Fe-Mo-Fe cluster (PPh(4))(2)[MoS(4)(Fe(SSiPh(3))(2))(2)] (7) or a dinuclear complex (NEt(4))(2)[Fe(2)(SSiPh(3))(2)Cl(4)] (8). On the other hand, the reaction of 3a with [Cu(CH(3)CN)(4)](PF(6)) gave a cyclic tetranuclear copper cluster Cu(4)(SSiPh(3))(4) (9), where silanethiolato ligands were transferred from iron to copper. Silicon-sulfur bond cleavage was found to occur when the cobalt complex 5 was treated with (NBu(4))F in THF, and a cobalt-sulfido cluster Co(6)(mu(3)-S)(8)(PPh(3))(6) (10) was isolated upon addition of PPh(3) to the reaction system. The silanethiolato complexes reported here are expected to serve as convenient precursors for sulfido cluster synthesis.  相似文献   

13.
The chemical reactions of a family of tetradentate pyridyl/imine ligands, L1, L2, and L3 (L1=[ N, N'-bis(2-pyridinylmethylene)]ethane-1,2-diamine; L2=[ N, N'-bis(pyridin-2-yl)benzylidene]ethane-1,2-diamine; L3=[ N, N'-bis(2-pyridinylmethylene)]propane-1,3-diamine), with Ni (II) in the presence of various pseudohalides (N3(-), SCN(-), and NCO(-)) have served to prepare six different complexes, [Ni 2(L1)2(N3)2](ClO4)2.H2O (1), [Ni 2(L2)2(N3)2](ClO4)2 (2), [Ni2(L2)2(NCS)4] (3), [Ni2(L2)2(NCO) 2](ClO4)2 (4), [Ni2(L3)2(NCO)2](ClO4)2 (5), and [Ni(L3)(N 3)2] (6), which have been characterized by X-ray crystallography. Interestingly, four of these complexes are dinuclear and exhibit end-on (EO) pseudohalide bridges (1, 2, 4, and 5), one is dinuclear and bridged exclusively by the tetradentate ligand (3), and one is mononuclear (6). The bulk magnetization of the complexes bridged by EO pseudohalides has been studied, revealing these ligands to mediate ferromagnetic coupling between the Ni(II) ions, with modeled coupling constants, J, of +31.62 (1), +28.42 (2), +2.81 (4), and +1.72 (5) cm(-1) (where the convention H=-2JS1S2 was used). The striking difference in the coupling intensity between N3(-) and NCO(-) has prompted an investigation by means of density functional theory calculations, which has confirmed the experimental results and provided insight into the reasons for this observation.  相似文献   

14.
The dinuclear compound [CuL2(py)U(acac)2] has been synthesized by treating [Cu(H2L2)] with U(acac)4 (L2 = N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine) and shows the antiferromagnetic Cu-U interaction; the distinct magnetic behaviour of the trinuclear complexes [(CuL2)2U] (antiferromagnetic) and [[CuL1(py)]U[CuL1]] (ferromagnetic) revealed the major influence of the Cu(II) ion coordination on the exchange interaction (L1 = N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine).  相似文献   

15.
The coordination chemistry of the ligands o-aminothiophenol, H(abt), 4,6-di-tert-butyl-2-aminothiophenol, H[L(AP)], and 1,2-ethanediamine-N,N'-bis(2-benzenethiol), H(4)('N(2)S(2')), with FeCl(2) under strictly anaerobic and increasingly aerobic conditions has been systematically investigated. Using strictly anaerobic conditions, the neutral, air-sensitive, yellow complexes (mu-S,S)[Fe(II)(abt)(2)](2) (1), (mu-S,S)[Fe(II)(L(AP))(2)](2).8CH(3)OH (2), and (mu-S,S)[Fe(II)('H(2)N(2)S(2'))](2).CH(3)CN (3) containing high spin ferrous ions have been isolated where (abt)(1-), (L(AP))(1-), and ('H(2)N(2)S(2'))(2-) represent the respective N,S-coordinated, aromatic o-aminothiophenolate derivative of these ligands. When the described reaction was carried out in the presence of trace amounts of O(2) and [PPh(4)]Br, light-green crystals of [PPh(4)][Fe(II)(abt)(2)(itbs)].[PPh(4)]Br (4) were isolated. The anion [Fe(II)(abt)(2)(itbs)](-) contains a high spin ferrous ion, two N,S-coordinated o-aminophenolate(1-) ligands, and an S-bound, monoanionic o-iminothionebenzosemiquinonate(1-) pi radical, (itbs)(-). Complex 4 possesses an S(t) = 3/2 ground state. In the absence of [PPh(4)]Br and presence of a base NEt(3) and a little O(2), the ferric dimer (mu-NH,NH)[Fe(III)(L(AP))(L(IP))](2) (5a) and its isomer (mu-S,S)[Fe(III)(L(AP))(L(IP))](2) (5b) formed. (L(IP))(2-) represents the aromatic o-iminothiophenolate(2-) dianion of H[L(AP)]. The structures of compounds 2, 4, and 5a have been determined by X-ray crystallography at 100(2) K. Zero-field M?ssbauer spectroscopy of 1, 2, 3, and 4 unambiguously shows the presence of high spin ferrous ions: The isomer shift at 80 K is in the narrow range 0.85-0.92 mm s(-1), and a large quadrupole splitting, |DeltaE(Q)|, in the range 3.24-4.10 mm s(-1), is observed. In contrast, 5a and 5b comprise both intermediate spin ferric ions (S(Fe) = 3/2) which couple antiferromagnetically in the dinuclear molecules yielding an S(t) = 0 ground state.  相似文献   

16.
The reactions of potentially hexadentate H2bbpen (N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)-ethylenediamine, H2L1), H2(Cl)bbpen (N,N'-bis(5-chloro-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L2), and H2(Br)bbpen (N,N'-bis(5-bromo-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L3) with Ln(III) ions in the presence of a base in methanol resulted in three types of complexes: neutral mononuclear ([LnL(NO3)]), monocationic dinuclear ([Ln2L2(NO3)]+), and monocationic trinuclear ([Ln3L2(X)n(CH3OH)]+), where X = bridging (CH3COO-) and bidentate ligands (NO3-, CH3COO-, ClO4-) and n is 4. The formation of a complex depends on the base (hydroxide or acetate) and the size of the respective Ln(III) ion. All complexes were characterized by infrared spectroscopy, mass spectrometry, and elemental analyses; in some cases, X-ray diffraction studies were also performed. The structures of the neutral mononuclear [Yb(L1)(NO3)], dinuclear [Pr2(L1)2(NO3)(H2O)]NO3.CH3OH and [Gd2(L1)2(NO3)]NO3.CH3OH.3H2O, and trinuclear [Gd3(L3)2(CH3COO)4(CH3OH)]ClO4.5CH3OH and [Sm3(L1)2(CH3COO)2(NO3)2(CH3OH)]NO3.CH3OH.3.65H2O were solved by X-ray crystallography. The [LnL(NO3)] or [Ln2L2(NO3)]+ complexes could be converted to [Ln3L2(X)n(CH3OH)]+ complexes by the addition of 1 equiv of a Ln(III) salt and 2-3 equiv of sodium acetate in methanol. The trinuclear complexes were found to be the most stable of the three types, which was evident from the presence of the intact monocationic high molecular weight parent peaks ([Ln3L2(X)n]+) in the mass spectra of all the trinuclear complexes and from the ease of conversion from the mononuclear or dinuclear to the trinuclear species. The incompatibility of the ligand denticity with the coordination requirements of the Ln(III) ions was proven to be a useful tool in the construction of multinuclear Ln(III) metal ion arrays.  相似文献   

17.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

18.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

19.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

20.
The coordination chemistries of the potential tetradentate ligands N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethylenediamine, H4[L1], the unsaturated analogue glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil), H2[L2], and N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2-dimethylpropylenediamine, H4[L3], have been investigated with nickel(II), palladium(II), and copper(II). The complexes prepared and characterized are [Ni(II)(H3L1)2] (1), [Ni(II)(HL2)2].5/8CH2Cl2 (2), [Ni(II)(L3**)] (3), [Pd(II)(L3**)][Pd(II)(H2L3) (4), and [Cu(II)(H2O)(L4)] (5), where (L4)2- is the oxidized diimine form of (L3)4- and (L3**)2- is the bis(o-iminosemiquinonate) diradical form of (L3)4-. The structures of compounds 1-5 have been determined by single crystal X-ray crystallography. In complexes 1 and 2, the ligands (H3L1)- and (HL2)- are tridentate and the nickel ions are in an octahedral ligand environment. The oxidation level of the ligands is that of an aromatic o-aminophenol. 1 and 2 are paramagnetic (mu(eff) approximately 3.2 mu(B) at 300 K), indicating an S = 1 ground state. The diamagnetic, square planar, four-coordinate complexes 3 and [Pd(II)(L3**)] in 4 each contain two antiferromagnetically coupled o-iminobenzosemiquinonate(1-) pi radicals. Diamagnetic [Pd(II)(H2L3)] in 4 forms an eclipsed dimer via four N-H.O hydrogen bonding contacts which yields a nonbonding Pd.Pd contact of 3.0846(4) A. Complex 5 contains a five-coordinate Cu(II) ion and two o-aminophenolate(1-) halves in (L4)2-. The electrochemistries of complexes 3 and 4a ([Pd(II)(L3**)] of 4) have been investigated, and the EPR spectra of the monocations and -anions are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号