首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ab initio calculations on formaldehyde/Li+ complexes are presented. The most stable arrangement is characterized by an energy of interaction of 43.2 kcal/mole, C2v symmetry and an oxygen—lithium distance of ROLi = 1.77 Å. A detailed analysis of the electron density function gives proof of the electrostatic nature of the complexes H2O/Li+ and H2Co/Li+ and shows extensive mutual polarization. The failure of the semi-empirical method to predict the changes in electron density at the Li+ cation correctly is explained.  相似文献   

2.
The influence of the potentially chelating imino group of imine‐functionalized Ir and Rh imidazole complexes on the formation of functionalized protic N‐heterocyclic carbene (pNHC) complexes by tautomerization/metallotropism sequences was investigated. Chloride abstraction in [Ir(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 a ) (cod=1,5‐cyclooctadiene, Dipp=2,6‐diisopropylphenyl) with TlPF6 gave [Ir(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 a +[PF6]?). Plausible mechanisms for the tautomerization of complex 1 a to 3 a +[PF6]? involving C2?H bond activation either in 1 a or in [Ir(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 a +[PF6]?) were postulated. Addition of PR3 to complex 3 a +[PF6]? afforded the eighteen‐valence‐electron complexes [Ir(cod)(PR3){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 7 a +[PF6]? (R=Ph) and 7 b +[PF6]? (R=Me)). In contrast to Ir, chloride abstraction from [Rh(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 b ) at room temperature afforded [Rh(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 b +[PF6]?) and [Rh(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 b +[PF6]?) (minor); the reaction yielded exclusively the latter product in toluene at 110 °C. Double metallation of the azole ring (at both the C2 and the N3 atom) was also achieved: [Ir2(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 10 ) and the heterodinuclear complex [IrRh(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 12 ) were fully characterized. The structures of complexes 1 b , 3 b +[PF6]?, 6 a +[PF6]?, 7 a +[PF6]?, [Ir(cod){C3HN2(DippN=CMe)(DippN=CH)(Me)‐κ2(N3,Nimine)}]+[PF6]? ( 9 +[PF6]?), 10? Et2O ? toluene, [Ir2(CO)4Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 11 ), and 12? 2 THF were determined by X‐ray diffraction.  相似文献   

3.
A new V6O13-based material has been synthesized via the sol–gel route. This sol–gel mixed oxide has been obtained from an appropriate heat treatment of the chromium-exchanged V2O5 xerogel performed under reducing atmosphere. This new compound, with the chemical formula Cr0.36V6O13.50, exhibits a monoclinic structure (C2/m) with the following unit cell parameters, a=11.89 Å, b=3.68 Å, c=10.14 Å, β=101.18°. The electrochemical characterization of this compound has been performed using galvanostatic discharge–charge experiments in the potential range 4–1.5 V and completed by ac impedance spectroscopy measurements. It exhibits a specific capacity of about 370 mAh g?1, which makes the compound Cr0.36V6O13.50 the best one in the V6O13-based system: 85% of the initial capacity (315 mAh g?1) after the 35th cycle is still available at C/25 without any polarization. From impedance spectroscopy, a high kinetics of Li transport (D Li=1.8×10?9 cm2 s?1) is found at mid-discharge.  相似文献   

4.
Charge-transfer salts [Co(C5H5)2][M(dpt)2] (M = Ni and Pt; dpt = cis-1,2-diphenylethene-1,2-dithiolate) were synthesized and crystallographically characterized. [Co(C5H5)2][Ni(dpt)2] crystallizes in the monoclinic space group C2/c with a = 25, 607(3) Å, b = 9.4151(11) Å, c = 14.407(4) Å, β = 101.373(22)°, V = 3405.3(10) Å3 and Z = 4. [Co(C5H5)2][Pt(dpt)2] belongs to the triclinic space group $ {\rm P}\bar 1 $ with a = 9.4666(11) Å, b = 13.9869(12) Å, c = 14.2652(9) Å, α = 99.983(6)°, β = 90.034(7)°, γ = 109.751(7)°, V = 1747.2(3) Å3 and Z = 2. Both structures consist of ··· D+A?D+A?D+A? ··· linear chains with the local C5 axis of the eclipsed [Co(C5H5)2]+ cation parallel to the best MS4 plane of the [M(dpt)2]? anion. Magnetic susceptibility measurements show that χM T values of the complexes [Co(C5H5)2][M(dpt)2] (M = Ni, Pd, and Pt) remain nearly constant in the temperature range 15–300 K, but decrease rapidly with further decreasing of temperature, indicating weak antiferromagnetic interactions at low temperatures.  相似文献   

5.
Quaternary polymer electrolyte (PE) based on poly(acrylonitrile) (PAN), 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (EMImBF4), sulfolane (TMS) and lithium hexafluorophosphate salt (LiPF6) (PAN-EMImBF4-sulfolane-LIPF6) was prepared by the casting technique. Obtained PE films of ca. 0.2–0.3 mm in thickness showed good mechanical properties. They were examined using scanning electron microscopy (SEM), thermogravimetry (TGA, DSC), the flammability test, electrochemical impedance spectroscopy (EIS) and galvanostatic charging/discharging. SEM images revealed a structure consisting of a polymer network (PAN) and space probably occupied by the liquid phase (LiPF6 + EMImBF4 + sulfolane). The polymer electrolyte in contact with an outer flame source did not ignite; it rather underwent decomposition without the formation of flammable products. Room temperature specific conductivity was ca. 2.5 mS cm?1. The activation energy of the conding process was ca. 9.0 kJ mol?1. Compatibility of the polymer electrolyte with metallic lithium and graphite anodes was tested applying the galvanostatic method. Charge transfer resistance for the C6Li → Li+ + e? anode processes, estimated from EIS curve, was ca. 48 Ω. The graphite anode capacity stabilizes at ca. 350 mAh g?1 after the 30th cycle (20 mA g?1).  相似文献   

6.
Abstract

The structures of several solvated lithium diorganophosphides are described. These may take a variety of structures including chain-like polymers with alternating Li+ and PR2 ? groups, dimeric species with PR2 ? groups bridging two Li+ ions or mononuclear species having terminal ?PR2 groups which have pyramidal geometries at phosphorus. The Li+ ions in all structures are solvated by either THF or Et2O bases. Separation of the Li+ can be effected using 12-crown-4 to coordinate Li+ as [Li(12-crown-4)2]+ affording free [PR2]? counterions. An extension of these techniques has led to the synthesis of the first compounds which have B-P double bonds. These are the compounds [Li(Et2O)2PRBMes2] and [Li(12-crown-4)2][PRBMes2](R=Ph, C6H11,Mes) which have B-P bond lengths of 1.82 – 1.83Å.  相似文献   

7.
The mechanism of dissolution of the Li+ ion in an electrolytic solvent is investigated by the direct ab initio molecular dynamics (AIMD) method. Lithium fluoroborate (Li+BF4?) and ethylene carbonate (EC) are examined as the origin of the Li+ ion and the solvent molecule, respectively. This salt is widely utilized as the electrolyte in the lithium ion secondary battery. The binding of EC to the Li+ moiety of the Li+BF4? salt is exothermic, and the binding energies at the CAM–B3LYP/6‐311++G(d,p) level for n=1, 2, 3, and 4, where n is the number of EC molecules binding to the Li+ ion, (EC)n(Li+BF4?), are calculated to be 91.5, 89.8, 87.2, and 84.0 kcal mol?1 (per EC molecule), respectively. The intermolecular distances between Li+ and the F atom of BF4? are elongated: 1.773 Å (n=0), 1.820 Å (n=1), 1.974 Å (n=2), 1.942 Å (n=3), and 4.156 Å (n=4). The atomic bond populations between Li+ and the F atom for n=0, 1, 2, 3, and 4 are 0.202, 0.186, 0.150, 0.038, and 0.0, respectively. These results indicate that the interaction of Li+ with BF4? becomes weaker as the number of EC molecules is increased. The direct AIMD calculation for n=4 shows that EC reacts spontaneously with (EC)3(Li+BF4?) and the Li+ ion is stripped from the salt. The following substitution reaction takes place: EC+(EC)3(Li+BF4?)→(EC)4Li+?(BF4?). The reaction mechanism is discussed on the basis of the theoretical results.  相似文献   

8.
Ab initio SCF and CI calculations on the cationic and neutral complexes of formaldehyde and lithium are reported. For the cationic complex CH2O/Li+, the stabilization energy of 41.7 kcal/mol obtained from the SCF calculation increases to 51.6 kcal/mol if a configuration interaction is introduced. For the neutral complex CH2O?/Li+, the C2v-conformer of the 2A1-state with the equilibrium bond distances of d(C? O) = 1.23 Å and d (O? Li) = 1.90 Å is calculated to be more stable than the 2B1-state with d (C? O) = 1.34 Å, and d (O? Li) = 1.65 Å. Charge transfer and polarization effects upon complex formation are discussed.  相似文献   

9.
Synthesis and Crystal Structure of KMgCu4V3O13 . Single crystals of KMgCu4V3O13 were prepared by supercooled melts. It crystallizes with monoclinic symmetry space group C–P21/m (Nr. 11), unit cell dimensions: a = 10.7144 Å, b = 6.0282 Å, c = 8.3365 Å, β = 98.075°, Z = 2. The crystal structure is closely related to the BaMg2Cu8O6O26 type. Cu2+ occurs in an unusual trigonal bipyramidal coordination.  相似文献   

10.
Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C8mim+PF6 ?, C8mim+BF4 ? or C8mim+NTf 2 ? ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N2 gas adsorption–desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7Li was concentrated in the solution phase while the lighter isotope 6Li was enriched in the gel phase. The solid–liquid extraction maximum single-stage isotopes separation factor of 6Li–7Li in the solid–liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li0.5)2(B15)2(H2O)]+ complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L?1 HCl and reused in the consecutive removal of lithium ion in five cycles.  相似文献   

11.
Abstract

Crown ether complexes formed by the dibenzo–30-crown–10 (DB30C10) with potassium and ammonium hexafluorophosphate have been prepared and their crystal structures have been determined by single crystal X-ray analyses. The potassium complex (compound 1) consists of [K(DB30C10)]+ cation and PF6 ? anion. Crystals are monoclinic, space group P2/n, with a = 11.9106(3), b = 9.8382(5), c = 14.3062(3) Å, β = 97.581(3)°, V = 1661.7(1) Å3, Dc = 1.440 g cm?3, Z = 4, R = 0.0675 for 2528 unique observed reflections. The potassium atom is coordinated to the ten oxygen atoms of the crown ligand at the distance from 2.859(3) to 2.930(3) Å. The ammonium complex (compound 2) has also 1:1 crown—cation ratio. Crystals are monoclinic, space group P21/n, with a = 12.5061(6), b = 19.3724(5), c = 14.2203(9) Å, β = 102.476(5)°, V = 3363.8(3) Å3, Dc = 1.501 g cm?3, Z = 4, R = 0.0677 for 4172 unique observed reflections. The ammonium cation is completely enclosed with crown oxygen atoms forming seven hydrogen bonds. The conformation of previously reported dibenzo-30-crown-10 complexes with potassium salts were investigated using polar coordinate maps.  相似文献   

12.
Lithium‐ion‐encapsulated [6,6]‐phenyl‐C61‐butyric acid methyl ester fullerene (Li+@PCBM) was utilized to construct supramolecules with sulfonated meso‐tetraphenylporphyrins (MTPPS4?; M=Zn, H2) in polar benzonitrile. The association constants were determined to be 1.8×105 M ?1 for ZnTPPS4?/Li+@PCBM and 6.2×104 M ?1 for H2TPPS4?/Li+@PCBM. From the electrochemical analyses, the energies of the charge‐separated (CS) states were estimated to be 0.69 eV for ZnTPPS4?/Li+@PCBM and 1.00 eV for H2TPPS4?/Li+@PCBM. Upon photoexcitation of the porphyrin moieties of MTPPS4?/Li+@PCBM, photoinduced electron transfer occurred to produce the CS states. The lifetimes of the CS states were 560 μs for ZnTPPS4?/Li+@PCBM and 450 μs for H2TPPS4?/Li+@PCBM. The spin states of the CS states were determined to be triplet by electron paramagnetic resonance spectroscopy measurements at 4 K. The reorganization energies (λ) and electronic coupling term (V) for back electron transfer (BET) were determined from the temperature dependence of kBET to be λ=0.36 eV and V=8.5×10?3 cm?1 for ZnTPPS4?/Li+@PCBM and λ=0.62 eV and V=7.9×10?3 cm?1 for H2TPPS4?/Li+@PCBM based on the Marcus theory of nonadiabatic electron transfer. Such small V values are the result of a small orbital interaction between the MTPPS4? and Li+@PCBM moieties. These small V values and spin‐forbidden charge recombination afford a long‐lived CS state.  相似文献   

13.
The properties of polymeric materials are dictated not only by their composition but also by their molecular architecture. Here, by employing brush‐first ring‐opening metathesis polymerization (ROMP), norbornene‐terminated poly(ethylene oxide) (PEO) macromonomers ( MM‐n , linear architecture), bottlebrush polymers ( Brush‐n , comb architecture), and brush‐arm star polymers ( BASP‐n , star architecture), where n indicates the average degree of polymerization (DP) of PEO, are synthesized. The impact of architecture on the thermal properties and Li+ conductivities for this series of PEO architectures is investigated. Notably, in polymers bearing PEO with the highest degree of polymerization, irrespective of differences in architecture and molecular weight (~100‐fold differences), electrolytes with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as an Li+ source exhibit normalized ionic conductivities (σn) within only 4.9 times difference (σn = 29.8 × 10?5 S cm?1 for MM‐45 and σn = 6.07 × 10?5 S cm?1 for BASP‐45 ) at a concentration of Li+ r = [Li+]/[EO] = 1/12 at 50 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 448–455  相似文献   

14.
7Li-NMR spectroscopy was used to study the complexation of Li+ ion with 12C4, 15C5, C222, C221, C211 in acetonitrile (AN) and its 50% (wt/wt) mixtures with two new room temperature ionic liquids, 1-ethyl-3-methylimidazolium hexafluorophosphate (EMim PF6) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMim BF4) at 298 K. Excluding the cases of Li+-C211 in all solvents and Li+-C221 in AN and 50% (wt/wt) AN-EMim PF6, in other cases, the exchange between free and 1:1 complexed Li+ was fast on the NMR time scale and only a single population average 7Li signal was observed. Formation constants of the resulting 1:1 complexes were evaluated by computer fitting of the chemical shift-mole ratio data and integration of two 7Li signals. All complexes in EMim PF6 were found to be more stable than those in EMim BF4. 7Li-NMR line-shape analysis was used to determine the kinetic parameters and the mechanism for the chemical exchange of Li+ between the free and 1:1 complex with C221 in 50% (wt/wt) AN-EMim PF6 mixtures solution. By comparing our study with the previous one, it is derived that, increasing the percentage of ion liquid in acetonitrile, changes the mechanism and decrease the exchange rate constant of Li+ ion between free and complex sites.  相似文献   

15.
A new category of crystalline polymer electrolyte prepared by the supramolecular self‐assembly of polyethylene oxide (PEO), α‐cyclodextrin (α‐CD), and LiAsF6 is reported. The polymer electrolyte consists of the nanochannels formed by α‐CDs in which the PEO/Li+ complexes are confined. The nanochannels formed by α‐CD provide the pathway for the directional motion of Li+ ions and at the same time prevent the access of the anions by size exclusion, resulting in good separation of the Li+ ions and the anions. The conductivity of the reported material is 30 times higher than that of the comparable PEO/Li+ complex crystal at room temperature. By using state‐of‐art solid‐state NMR spectroscopy, the structure and dynamics of the material were investigated in detail. The dynamics of the Li+ ions was studied and correlated to the ionic conductivity of the material.  相似文献   

16.
In the title compounds, C6H8N3O2+·NO3? and C5­H6­N3­O2+·­CH3SO3?, respectively, the cations are almost planar; the twist of the nitr­amino group about the C—N and N—N bonds does not exceed 10°. The deviations from coplanarity are accounted for by intermolecular N—H?O interactions. The coplanarity of the NHNO2 group and the phenyl ring leads to the deformation of the nitr­amino group. The C—N—N angle and one C—C—N angle at the junction of the phenyl ring and the nitr­amino group are increased from 120° by ca 6°, whereas the other junction C—C—N angle is decreased by ca 5°. Within the nitro group, the O—N—O angle is increased by ca 5° and one O—N—N angle is decreased by ca 5°, whereas the other O—N—N angle remains almost unchanged. The cations are connected to the anions by relatively strong N—H?O hydrogen bonds [shortest H?O separations 1.77 (2)–1.81 (3) Å] and much weaker C—H?O hydrogen bonds [H?O separations 2.30 (2)–2.63 (3) Å].  相似文献   

17.

The MP2 and CCSD calculations of the geometries and binding energies of the Li+·(N2)n (n?=?1–4) complexes are obtained. The potential energy surface showed that these complexes exhibit one minimum state and one transition state. The mono- and di-ligated complexes exhibit linear configurations with a binding energy of 11.1 and 21.2 kcal mol?1, respectively. Trigonal planar and tetrahedral configurations are obtained for tri- and tetra-ligated complexes, respectively. The computed sequential bond dissociation energies (BDEs) of Li+·(N2)n (n?=?1–4) complexes are also calculated in which the mono-ligated complex has the largest BDE value. The obtained trend is mainly dependent on the variation in the ion-quadrupole interaction of these ion complexes. These calculations predict that these complexes are of purely electrostatic nature.

  相似文献   

18.
The reaction of Brønsted acids with cis-[Ru(bpy)2(CO3)] (bpy?=?2,2′-bipyridine) under CO results in cleavage of the carbonato ligand and formation of cationic cis-[Ru(bpy)2(CO)L] n + complexes [L?=?ONO2 (1 +), OH2 (2 2+), Cl (3 +), OCOH (4 +), and OCOCH3 (5 +)]. The structures of 1 + and 2 2+ were confirmed by single-crystal X-ray diffraction. Crystal data for 1(PF6): monoclinic, P21/c, a?=?10.5242(3), b?=?15.4727(3), c?=?14.6571(3) Å, β?=?92.3219(9)°, V?=?2384.77(9) Å3, Z?=?4, D calcd?=?1.806?g cm?3, 5460 unique reflections (R int?=?0.032), R 1?=?0.0540 [I?>?2σ(I)], wR 2?=?0.1642 (all reflections); crystal data for 2(ClO4)2?·?H2O: monoclinic, C2/c, a?=?20.4247(7), b?=?10.0777(3), c?=?15.6039(5) Å, β?=?127.7569(8)°, V?=?2539.31(14) Å3, Z?=?4, D calcd?=?1.769?g cm?3, 2895 unique reflections (R int?=?0.036), R 1?=?0.0343 [I?>?2σ(I)], wR 2?=?0.0907 (all reflections). Except for 2(PF6)2 the complexes exhibit oxidation at 1.02–1.30?V versus Fc+/Fc in acetonitrile. Bipyridine-centered reductions are also observed; these redox potentials depend on the nature of L. This convenient synthesis will be useful for producing cis-[Ru(bpy)2(CO)L] n +-type complexes in high yield.  相似文献   

19.
A number of nitroarene and aminoarene complexes, including the PF6? salts of NO2C6H5FeCpp+, 0-, m- or p-CH3(NO2)C6H4FeCp+, NH2C6H5FeCpp+ and 0-, m-, orp-CH3(NH2)C6H4FeCpp+, when heated with an excess of P(OC2H5)3 all gave rise to the ring replacement product, CpFe(P(OC2H5)3)3+ PF6? (I). Similarly, the thermal reaction of NO2C6H5Fe(CH3)Cp+ PF6? or NH2C6H5Fe(CH3)Cp+ PF6? with P(OC2H5)3 gave CH3CpFe(P(OC2H5)3)3+ PF6? (VII). With m-CH3(Cl)C6H4-FeCp+ PF6? (XIV), heating with P(OC2H5)3 also gave rise to I, while the same treatment with P(OC2H5)3 at room temperature in CH2Cl2 showed no nucleophilic substitution of the chlorine atom of XIV by P(OC2H5)3. On the other hand, the chlorine atom of a number of chloroarene complexes could be readily displaced at room temperature with various amines acting as nucleophiles. Such nucleophilic substitutions were carried out on ClC6H5FeCp+ PF6? and 0-, m- or p-CH3(CI)C6H4FeCp+ PF6? with methylamine, ethylenediamine, cyclohexylamine, benzylamine and pyrrolidine to give rise to 20N-substituted aminoarene complexes.  相似文献   

20.
Polyphosphonates, a class of polymers with the generic formula –[P(R)(X)–OR'O]n–, exhibit a high degree of modularity due to the range of R, R', and X groups that can be incorporated. As such, these polymers may be designed with a polyethylene oxide (PEO) backbone (R' group) and employed as solid polymer electrolytes (SPEs). Two PEO-containing polyphosphonate analogs (R = Ph; X = S or Se) were doped with LiPF6 and their conductivities were measured. Conductivities were similar (X = S) to or exceeding (X = Se) those of standard PEO systems (just below 10−4 S/cm at 100°C). Binding models for Li+ were generated using 31P{1H}NMR titration experiments. Binding of Li+ by these polyphosphonates followed a positive cooperativity model, and varying the X group (S or Se) affected the observed cooperativity (Hill coefficient = 1.73 and 4.16, respectively). The presence of Se also leads to an increase in conductivity as temperature is raised above the Tg, which is likely an effect of reduced Columbic interactions. Because of their modularity and ease with which cation binding can be evaluated using 31P{1H} NMR titration experiments, polyphosphonates offer a unique approach for the modification of Li+ ion battery technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号