首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Coelectroosmotic micellar electrokinetic chromatography (coelectroosmotic MEKC) has been investigated for the separation of twelve aromatic sulfonate compounds. The advantage of this method is that it combines the efficient separation characteristic of MEKC and the short analysis time of the coelectroosmotic mode. MEKC was performed with either cetyltrimethylammonium bromide (CTAB) or polyethylene glycol dodecyl ether (Brij 35) surfactants as pseudostationary phases and 2-propanol as organic modifier. The electroosmotic Flow (EOF) was reversed by adding two types of EOF modifier, an alkylammonium salt (cetyltrimethylammonium bromide, CTAB) or a cationic polyelectrolyte (hexadimetrine bromide, HDB). The surfactant concentration, applied voltage, and temperature were optimized, the influence of 2-propanol on the MEKC resolution of the compounds was studied. The effect of the osmotic modifier on the separation was also investigated.  相似文献   

2.
Sodium di(2-ethylhexyl) sulfosuccinate (DOSS) and sodium di(2-ethylhexyl) phosphate (NaDEHP) surfactants, with double alkyl chains and negatively charged headgroups, were characterized using fluorescence quenching, densitometry, and tensiometry techniques to determine their aggregation number, partial specific volume, and critical aggregation concentration. These two surfactants were then applied as pseudostationary phases in micellar electrokinetic chromatography (MEKC) for separations of alkyl phenyl ketones. The aggregation number of NaDEHP was found to be more than two-fold higher than that of DOSS. The partial specific volumes of NaDEHP and DOSS were found to be 0.9003 and 0.8371 mL/g, respectively. The critical aggregation concentrations are 5.12 and 1.80 mM for NaDEHP and DOSS, respectively. The DOSS surfactant provided a wider separation window and had a greater hydrophobic environment than the NaDEHP surfactant under the MEKC experimental conditions studied.  相似文献   

3.
彭振磊  林金明 《色谱》2009,27(5):621-630
近年来毛细管微乳电动色谱(MEEKC)研究的范围不断扩大,其分离分析的化合物类型也不断增多。该文综述了2002年以来MEEKC应用的研究进展,指出了目前MEEKC研究中存在的一些问题,对今后的研究发展方向进行了展望。  相似文献   

4.
Retention indices in micellar electrokinetic chromatography   总被引:1,自引:0,他引:1  
The use of retention indices in micellar electrokinetic chromatography (MEKC) is evaluated both from a theoretical and a practical point of view. Fundamental equations for the determination of retention indices in MEKC are described, showing that retention indices are independent of the surfactant concentration. Possibilities as well as limitations of different homologous series as reference standards are described. In addition, the practical application of retention indices for identification, investigation of solute-micelle interactions, characterization and classification of pseudo-stationary phases and determination of solute lipophilicity are discussed.  相似文献   

5.
研究了两亲性无规共聚物聚(苯乙烯-co-甲基丙烯酸)(P(St-co-MAA))(单体摩尔比分别为6:4和7:3)自组装胶束的物理化学性质,及其作为假固定相(PSP)的胶束电动色谱性能。测定了聚合物胶束的临界胶束浓度(CMC),对胶束内核微环境的极性、表面电荷密度和流体力学直径等微结构参数进行了表征,对时间窗口、亚甲基选择性等电动色谱参数进行了测定,并与聚(甲基丙烯酸甲酯-co-甲基丙烯酸)(P(MMA-co-MAA))胶束、十二烷基硫酸钠(SDS)胶束体系进行了比较;利用线性溶剂化能关系(LSER)研究了聚合物PSP的选择性差异。结果表明:P(St-co-MAA)体系具有最小的CMC、最宽的时间窗口和最好的亚甲基选择性;LSER表明,疏水作用是决定聚合物PSP选择性的最主要因素,氢键酸度其次,特别是P(St-co-MAA)(单体摩尔比7:3)体系具有最高的作用参数,显示了该PSP具有较高的分离选择性。  相似文献   

6.
考察了用微乳液毛细管电动色谱(MEEKC)分离蛋白质时微乳液组成等不同因素对分离的影响,并与胶束电动色谱进行对比,探讨了其分离机理,为蛋白质的分离鉴定提供了一种有力的工具.  相似文献   

7.
非水胶束电动色谱分离邻苯二甲酸酯类化合物   总被引:2,自引:0,他引:2  
非水胶束电动色谱(NAMEKC)兼具非水毛细管电泳的优点和胶束电动色谱的分离机制,尤其适于对强疏水性化合物进行分离分析。在以甲酰胺为非水溶剂的电泳介质中,采用十二烷基硫酸钠(SDS)形成胶束相,开展NAMEKC方法的研究。通过添加水溶液、调节水溶液酸度、添加有机溶剂、改变SDS浓度等操作条件的考察,在15 min 内实现了3种美国环保局优先监测的污染物——邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯的分离。分离度最小者为1.5,检测限优于3.04 mmol/L(以信噪比为3计)。3种典型的强疏水性物质的成功分离,显示出NAMEKC方法在分离疏水性物质方面的优势,扩展了NAMEKC在电中性有机物分析中的应用。  相似文献   

8.
Micellar electrokinetic capillary chromatography (MECC) is a branch of capillary electrophoretic techniques, in which surfactant micelles are added to the electrolyte solution as pseudostationary phase. Separation in MECC is based on electrophoretic mobilities of the analytes when partitioned into micelles1. In this work, four acidic drugs similar in structure with aryl carboxylic acid were separated by MECC. The effects of type of surfactant, such as anionic surfactant SDS, nonionic …  相似文献   

9.
Ràfols C  Poza A  Fuguet E  Rosés M  Bosch E 《Electrophoresis》2002,23(15):2408-2416
The experimental conditions that produce analyte peak splitting in micellar electrokinetic capillary chromatography (MEKC) have been systematically investigated. The system studied was a neutral phosphate buffer and sodium dodecyl sulfate (SDS) micelles as pseudostationary phase. A number of analytes showing a wide variety of hydrophobicity values and several organic solvents as sample diluents have been tested. Peak splitting phenomena are mainly due to the presence of organic solvent in the sample solution. They increase with the hydrophobicity of the analyte and decrease with the increase of the surfactant concentration. When hydrophobic compounds are analyzed the suggested ways to avoid split peaks are: (i) the use of 1-propanol or 1-butanol as sample diluent instead of methanol or acetonitrile or (ii) the use of high concentration of surfactant in the separating solution when the analyte must be dissolved in pure methanol or acetonitrile.  相似文献   

10.
Micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) are two kinds of electrokinetic capillary chromatography (EKC), which are characterized of high solubilization capacity and separation efficiency. In our previous work, some polar organic compounds and hydrophobic neutral compounds were separated successfully by EKC1-3. In this paper, these methods were used for separating six pyridoncarboylxic acid derivatives with similar structures. T…  相似文献   

11.
Oligomeric procyanidins are potent antioxidant polyphenols of potential interest as disease-preventing agents. Their efficiency depends on the size and composition of their oligomeric structures. The mean degree of polymerization of these compounds is usually estimated by thiolysis with thiol-alpha-toluene followed by analysis using high-performance liquid chromatography (HPLC). We show the development of a mixed micellar electrokinetic chromatography (MEKC) method for the separation of the major components obtained after thiolysis with cysteamine (catechins and their cysteamine conjugates). MEKC studies using sodium dodecyl sulfate (SDS as pseudostationary phase led to long migration times, e.g., with 100 mM SDS, at pH 7, the solutes were separated in about 40 min), while the use of sodium cholate (SC) produced an elution window relatively short. Using a mixed micellar SC-SDS system (50 mM phosphate at pH 7 containing 40 mM SC and 10 mM SDS), it is possible to separate these compounds in less than 15 min. The proposed method is useful to separate the major components of the thiolysate in effluents from food processing (e.g., skins and seeds from grape and apple) considered as potential procyanidin sources.  相似文献   

12.
Sodium di(undecenyl) tartarate monomer (SDUT), a vesicle-forming amphiphilic compound possessing two hydrophilic carboxylate head groups and two hydrophobic undecenyl chains gemini surfactant, was prepared and polymerized to form a polymeric gemini surfactant (i.e., poly-SDUT). These anionic surfactant systems with carboxylate (SDUT and poly-SDUT) and sulfate (sodium dodecyl sulfate, SDS) head groups as well as mixed surfactant systems (SDS/SDUT, SDS/poly-SDUT, and SDUT/poly-SDUT) were then applied as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC). The SDUT and poly-SDUT were characterized using various analytical techniques. Retention factors of 36 benzene derivatives were calculated in 20 mM phosphate buffer of each surfactant system. The retention factor values of the test solutes show that there are distinctive selectivity differences between the surfactant systems. Solute-pseudostationary phase interactions in MEKC were also examined by determining the free energy of transfer of the substituted functional groups from the aqueous buffer phase into the pseudostationary phase.  相似文献   

13.
14.
余美娟  杭栋  曹玉华 《色谱》2011,29(2):131-136
考察了离子液体对胶束电动色谱胶柬微结构以及分离效果的影响.研究结果表明,离子液体使胶束的表面电荷密度变小、粒径变大及其内核极性增大.以泼尼松、氢化可的松和泼尼松龙为分析对象,氢化可的松与泼尼松龙在十二烷基硫酸钠(SDS)胶束体系中不能实现分离.而在SDS-离子液体混合介质(20 mmol/L SDS-10 mmol/L...  相似文献   

15.
Sodium 10-undecenyl sulfate (SUS), sodium 10-undecenyl leucinate (SUL) and their five different mixed micelles at varied percent mole ratios were prepared. The critical micelle concentration (CMC), C20, γCMC, partial specific volume, methylene group selectivity, mobilities and elution window were determined using a variety of analytical techniques. These surfactant systems were then evaluated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC). As a commonly used pseudostationary phase in MEKC, sodium dodecyl sulfate (SDS) was also evaluated. The CMC values of SUS and SUL were found to be 26 and 16 mM, respectively, whereas the CMC of mixed surfactants was found to be very similar to that of SUL. The C20 values decreased dramatically as the concentration of SUL is increased in the mixed micelle. An increase in SUL content gradually increased the methylene group selectivity making the binary mixed surfactants more hydrophobic. Linear solvation energy relationships (LSERs) and free energy of transfer studies were also applied to predict the selectivity differences between the surfactant systems. The cohesiveness and the hydrogen bond acidic character of the surfactant systems were found to have the most significant influence on selectivity and MEKC retention. The SUS and SDS showed the strongest while SUL showed the weakest hydrogen bond donating capacity. The basicity, interaction with n and π-electrons of the solute and dipolarity/polarizability were the least significant factors in LSER model for the surfactant systems studied. Free energies of transfer of selected functional groups in each surfactant systems were also calculated and found to be in good agreement with the LSER data.  相似文献   

16.
One disadvantage of amino acid-based chiral selectors for micellar electrokinetic chromatography (MEKC) is that either they have very low solubility or are insoluble at acidic pHs. In order to increase solubilities at lower pHs, we have synthesized a highly water-soluble achiral surfactant and copolymerized it with an amino acid-based chiral surfactant. These two surfactants were polymerized either separately or at various molar rations of binary solutions, yielding pure molecular or copolymerized surfactant (CoPS), respectively. All surfactants were characterized by use of several analytical techniques prior to using them as novel pseudostationary phases in MEKC. The chromatographic performance of the CoPS in MEKC was tested with chiral and achiral analytes. The highly soluble sulfate head group significantly increased the solubility of amino acid-based CoPS over a wide range of pH. Three chiral binaphthyl derivatives were tested and each surfactant system was found to have different selectivity.  相似文献   

17.
He S  Zhao Y  Zhu Z  Liu H  Li M  Shao Y  Zhuang Q 《Talanta》2006,69(1):166-171
The separation and determination of four parabens (methyl, ethyl, propyl, and butyl p-hydroxybenzoate) which are commonly used as preservatives in cosmetic products, by micellar electrokinetic capillary chromatography (MEKC) with and without large-volume sample stacking (LVSS) technique were compared. As an effective on-line concentration technique, LVSS was successfully combined with MEKC to determine neutral parabens in an acidic media. The effects of some typical parameters such as sample volume, buffer pH, temperature, and concentration of surfactant were examined. The detection limits for this LVSS-MEKC method were found to be 3.0 × 10−7 M for each of the parabens based on the signal-to-noise ratio of 3, which were around 300 times lower than normal MEKC technique. The curves of peak response versus concentration were linear from 1.0 × 10−6 to 5.0 × 10−5 M with regression coefficients of 0.9987, 0.9960, 0.9925 and 0.9864, respectively. A simple and easy-manipulative sample preparation method was developed and validated by analyzing commercially available cosmetic samples. It was found that with current sample preparation process and instrumentation system, 0.5 g of sample is enough for the analysis of parabens preservatives in cosmetic product with satisfactory results.  相似文献   

18.
董文玉 《分析化学》1997,25(11):1285-1289
  相似文献   

19.
A novel microemulsion electrokinetic chromatography (MEEKC) method for separating and determining two sesquoterpene lactones, alantolactone (AL) and isoalantolactone (IAL), in Radix inulae and Liuwei Anxian San has been developed. The effects of several important factors such as internal organic phases, concentration of microemulsion, concentration of acetonitrile, injection time and running voltage were systematically investigated to determine the optimum conditions. The optimum microemulsion system was composed of n-hexane (0.32% w/w), SDS (1.24% w/w), 1-butanol (2.64% w/w), acetonitrile (10% w/w) and 10 mm sodium tetraborate buffer (85.80% w/w, pH 9.2). The applied voltage was 20 kV. The analytes were detected at 214 nm. Regression equations revealed linear relationships (correlation coefficients 0.9950 for AL and 0.9946 for IAL) between the peak area of each analyte and the concentration. The limits of detection (defined as a signal-to-noise ratio of about 3) were approximately 0.45 microg/mL for AL and 0.56 microg/mL for IAL. The levels of the analytes were successfully determined with recoveries ranging from 98.2 to 104.3%. Furthermore, a simple and effective extraction method, with methanol in an ultrasonic water bath for 60 min, was used for sample preparing. Also, MEEKC was compared with micellar electrokinetic chromatography (MEKC) and shown better separation results.  相似文献   

20.
范恩国  黄晓晶  张锴  白玉华  高如瑜  阎超 《色谱》2007,25(3):319-321
白藜芦醇可以顺式和反式两种形式存在。它是一种具有药理活性的植物抗毒素,具有抗肿瘤、保护心血管、防止机体老化的功效。分别采用胶束电动色谱和微柱液相色谱两种方法对白藜芦醇的两种异构体进行了分离,并对这两种方法进行了比较。结果表明,两种方法均具有分离快速、重现性好、溶剂消耗少的特点,都适用于白藜芦醇的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号