首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
In a very recent paper [1] we have reported oscillator strengths for fine structure transitions between levels belonging to the diffuse and sharp spectral series in the silver isoelectronic sequence. The calculations were performed with the quantum defect orbital method in both their non-relativistic (QDO) and relativistic (RQDO) formulations, with both implicit and explicit allowance for core-valence polarisation. We now present a parallel study of transitions belonging to thens 2 Sn2 P(n=5, 6;n=5–10) spectral series of the AgI sequence, up toZ=63 in some cases.  相似文献   

2.
Theoretical oscillator strengths are reported for the lines of the 4s4p 3 P-4s4d 3 D transition in some ions of the zinc isoelectronic sequence, which are of interest in fusion plasma research. The calculations have been performed with the relativistic quantum defect orbital (RQDO) method. A core-polarization to the dipole transitions moment has also been included in the formalism. A comparative study with other theoretical results and the scarce experimental measurements has also been carried out. Systematic trends of individual oscillator strengths along the isoelectronic sequence are also shown in a graphical form.  相似文献   

3.
The analysis of forbidden lines, such as E2 and M1, in the atomic spectra emitted by certain ions is important for the study of the plasma in astrophysical objects and fusion devices. Atomic data, such as wavelengths and transition rates for 4p3/2 → 4p1/2 emission lines in the gallium sequence have been calculated with the Relativistic Quantum Defect Orbital (RQDO) method. The present results are tested by comparison with other theoretical values available in the literature. The regularity of the transition intensities along the isoelectronic sequence for both (E2 and M1) lines, as well as their relative magnitude, are also analyzed. M1 transitions were found to dominate by at least a factor of ten times, being in many cases bigger that this. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

4.
The redox behaviour of tetrakis(triphenylphosphine)-platinum(0) [Pt(TPP)4], tetrakis(triphenylphosphine)-palladium(0) [Pd(TPP)4] and tetrakis(triphenylphosphine)-nickel(0) [Ni(TPP)4] has been studied in N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetonitrile (AN), propanediol carbonate (PDC), N,N-dimethylthioformamide (DMTF) N-methylpyrrolidine-2-thione (NMTP) and nitromethane (NM). The platinum complex was found to undergo irreversible two electron oxidations with partial or complete loss of the ligands in all solvents but nitromethane. The palladium complex was also oxidized to the divalent form in the solvents studied except inPDC andNM where the complex was found to be polarographically inactive; Ni(TTP)4 was reversibly or almost reversibly oxidized to a movovalent form inDMF, AN andDMTF followed by an irreversible oxidation to a divalent complex. Direct oxidation to the divalent form occurred inDMSO, no oxidation was observable inNMTP andPDC, decomposition took place in nitromethane. The half-wave potentials were recorded versus bisbiphenylchromium iodide (BBCr)I as an internal standard. The influence of the solvents on the redox behaviour and the dissociation of ligands is discussed.

Mit 1 Abbildung  相似文献   

5.
The Hartree-Fock electron density has an important property that it is identical to the exact density to first order in the perturbation theory. For the neutral atoms from He (Z = 2) to Lr (Z = 103) in their ground state, we report an accurate analytical approximation F(r) to the spherically averaged electron densityρ(r) obtained by the numerical Hartree-Fock method. The present density functionF(r) is expressed by a linear combination of reasonable number (not more than 30) of basis functionsr ni exp(- ζ i r), and has the following properties: (i)F(r) is nonnegative, (ii)F(tr) is normalized, (iii)F(r) reproduces the Hartree-Fock moments <r k > (k = −2 to +6), (iv)F(0) is equal toρ(0), (v)F′(0) satisfies the cusp condition, and (vi)F(r) has the correct exponential decay in the long-range asymptotic region.  相似文献   

6.
Summary Treatment ofcis-dichlorobis(dimethyl sulphoxide)platinum(II) [1] with an excess oftert-butylamine in MeOH yieldstert-butylamine-trans-dichloro(dimethyl sulphoxide)-platinum(II) [(tr-5)], rather than thecis-diaminechloro-(dimethyl sulphoxide)platinum(II) cation expected by analogy with similar reactions reported in the literature. The correspondingcis isomer [(cis-5)] is prepared from the same reactants (and similarly from K2PtCl4 andtert-butylamine) in DMSO medium, in which the initially formedtrans compound partially isomerizes to the thermodynamically favouredcis complex. The molecular structure of (cis-5) is determined by X-ray analysis. The coordination around the Pt atom is square-planar, and the DMSO ligand is S-coordinated. The lengths of the Pt-Cl bondscis andtrans to the DMSO ligand are 2.296(11) and 2.321(10) Å, respectively, and are well within expected ranges. Interatomic distances within the amine and DMSO ligands are normal.  相似文献   

7.
ESR and optical absorption studies are described for a number of copper(II) chelates with aliphatic polyamines, exhibiting both square pyramidal and square bipyramidal coordination around the copper ion. The complexes studied were bis(N,N′-dimethylethylenediamine)copper(II) sulphate tetrahydrate, bis(N,N′-diethylethylenediamine)copper(II) nitrate, diaquosulphato(N,N,N′,N′-tetramethylethylenediamine)copper(II) hydrate, dinitrato(N,N,N′,N′-tetramethylethylenediamine)copper(II), dichloro(N,N,N′,N′-tetramethylethylenediamine)copper(II) and dithiocyanato(N,N,N′,N′-tetramethylethylenediamine)copper(II). The ESR measurements were carried out in methanol, dimethyl sulphoxide, dimethylformamide and pyridine, at room and liquid nitrogen temperatures. The molecular orbital coefficients were estimated assuming an axial symmetry. The parameter χ proportional to the hyperfine constants shows a variation with the solvent for all these complexes. The χ values in solution are lower than the corresponding average χ values reported in the solid state for each complex. The solvent effect and the influence of 4s character in the ground state are discussed. The χ values, either calculated or reported, for a number of copper complexes for [4O], [3O, N], [2O, 2N], [O, 3N] and [4N] environments around copper(II) are presented.  相似文献   

8.
Synthetic routes leading to the preparation of 4-substituted 1,4-benzodiazepine-3,5-diones are described. Thus, 2-carbobenzoxyaminobenzoic acid was converted to its p-nitrobenzyl ester (I) and the decarbobenzoxylated product (II) gave, with ethyl α-bromoacetate, N-(2-carboxy p-nitrobenzylate)phenylglycine ethyl ester (III). The latter was hydrogenolyzed to N-(2-car-boxy)phenylglycine ethyl ester (IV), which was coupled with benzylamine to give N-(2-carboxy-benzylamido)phenylglycine ethyl ester (VIa). Saponification of VIa afforded N-(2-carboxy-benzylamido)phenylglycine (VIIa) which was cyclized with DCCI to produce 4-benzyl-2H-1,4-benzodiazepine-3,5(lH,4H)dione (VIIIa). Alternatively, 2-nitro-N-phenylbenzamide (Xb) was reduced to 2-amino-N-phenylbenzamide (XIb) which was converted to N-(2-carboxanih'do)-phenylglycine ethyl ester (VIb). The latter was converted to 4-phenyl-2H-1,4-benzodiazepine-3,5(1H,4H)dione (VIIIb) in an analogous fashion described for VIIIa.  相似文献   

9.
The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [( L1 )Au(Cl)] ( 1 ), [( L2 )Au(Cl)] ( 2 ), and [( L3 )Au(Cl)] ( 3 ) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N’-(n-butyl)-imidazolium chloride, ( L1 .HCl)], [N-(9-acridinyl)-N’-(n-pentyl)-imidazolium chloride, ( L2 .HCl)] and [N-(9-acridinyl)-N’-(n-hexyl)-imidazolium chloride, ( L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1 – 3 with n-alkyl substituents is explored. The molecules 1 – 3 depicted blue emission in the solution state, while the yellow emission (for 1 ), greenish-yellow emission (for 2 ), and blue emission (for 3 ) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N’-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N’-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.  相似文献   

10.
The bromination of dimethyl 8‐methoxy‐1,6,10‐trimethylheptalene‐4,5‐dicarboxylate ( 6 ; Scheme 2) with N‐bromosuccinimide (NBS) in N,N‐dimethylformamide (DMF) leads in acceptable yields to the corresponding 9‐bromoheptalenedicarboxylate 10 (Table 1). Ether cleavage of 6 with chlorotrimethylsilane (Me3SiCl)/NaI results in the formation of oxoheptalenedicarboxylate 13 in good yield (Scheme 4). The latter can be acetyloxylated to the (acetyloxy)oxoheptalenedicarboxylate 14 with Pb(OAc)4 in benzene (Scheme 5). Oxo derivative 14 , in turn, can be selectively O‐methylated with dimethyl sulfate (DMS) in acetone to the (acetyloxy)methoxyheptalenedicarboxylates 15 and 15′ (Scheme 6). The AcO group of the latter can be transformed into a benzyl or methyl ether group by treatment with MeONa in DMF, followed by the addition of benzyl bromide or methyl iodide (cf. Scheme 9). Reduction of the ester groups of dimethyl 7,8‐dimethoxy‐5,6,10‐trimethylheptalene‐1,2‐dicarboxylate ( 25′ ) with diisobutylaluminium hydride (DIBAH) in tetrahydrofuran (THF) leads to the formation of the corresponding dimethanol 26′ , which can be cyclized oxidatively (IBX, dimethyl sulfoxide) to 8,9‐dimethoxy‐6,7,11‐trimethylheptaleno[1,2‐c]furan ( 27 ; Scheme 11).  相似文献   

11.
Abstract

The new 1,2-dithiolene, 1,4-butanediyldithioethylene-1,2-dithiolate, has been isolated. In addition, new monoanionic bis-complexes with nickel and copper have been prepared and isolated. The formal Ni(III) complex crystallizes in the orthorombic space group, Pbca, with a = 9.762(9), b = 12.53(2), and c = 23.166(3) Å, with 4 molecules in the unit cell. The structure was refined to an R = 9.01% (Rw = 8.95%). The formal Cu(III) complex crystallizes in the monoclinic space group, C2/c, with a = 25.567(6), b = 8.011(3), c = 14.504(3) Å, and β = 106.17(2)° with 4 molecules in the unit cell. The structure refined to R = 4.2% with R w = 4.3%. Comparisons to similar 1,2-dithiolenes suggest this ligand produces only modest structural and electronic differences when compared to the 1,3-propanediyldithioethylene-1,2-dithiolate complexes. The oxidation (to a neutral complex) and reduction (to a dianion) for the Ni(III) and Cu(III) complexes show large differences from those of maleonitriledithiolate. Other physical data are presented as well.  相似文献   

12.
Summary: A novel amphiphilic ABCBA-type pentablock copolymer with properties that are sensitive to temperature and pH, poly(2-dimethylaminoethyl methacrylate)-block-poly(2,2,2-trifluoroethyl methacrylate)-block-poly(ε-caprolactone)-block-poly(2,2,2- trifluoroethyl methacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PDMAEMA- b-PTFEMA-b-PCL-b-PTFEMA-b-PDMAEMA), was synthesized via consecutive atom transfer radical polymerizations (ATRPs). The copolymers obtained were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectroscopy, respectively. The aggregation behaviors of the pentablock copolymers in aqueous solution with different pH (pH = 4.0, 7.0 and 8.5) were studied. Transmission electron microscopic images revealed that spherical micelles from self-assembly of the pentablock copolymer were prevalent in all cases. The mean diameters of these micelles increased from 34, 46, to 119 nm when the pH of the aqueous solution decreased from 8.5, 7.0, to 4.0, respectively.  相似文献   

13.
A low temperature ATRP of methacryloisobutyl POSS (POSS-MA) is carried out, using poly(propylene glycol) (PPG)-based macroinitiator, in toluene with CuCl/PMDETA as the catalyst system, generating well-defined P(POSS-MA)-b-PPG-b-P(POSS-MA) triblock copolymer with Р~ 1.1. The semilogarithmic kinetic plot reveals first-order kinetics and the dispersity is observed to decrease as the reaction progresses—an indication of the controlled behavior of the polymerization. To assess the chain-end fidelity of the produced block copolymer, chain extension is carried out with oligo(ethylene glycol methacrylate) (OEGMA) that afforded water-soluble P(OEGMA)-b-P(POSSMA)-b-PPG-b-P(POSSMA)-b-P(OEGMA) pentablock copolymers. The SEC profiles suggest a quantitative initiation by the macroinitiator. By varying the monomer to initiator molar ratio, block copolymers with various P(OEGMA) chain lengths, ranging from 19 to 58 units on each side have been achieved with relative lower dispersity (Р< 1.4). Kinetic analysis of the ATRP of OEGMA, with P(POSSMA)-b-PPG-b-P(POSSMA) as the macroinitiator, suggests first-order kinetics and controlled nature of the polymerization. The PPG and P(OEGMA) segments impart a thermosensitive character to the obtained water-soluble amphiphilic hybrid block copolymers; hence they display temperature-dependent self-assembly behavior in aqueous medium.  相似文献   

14.
Investigations on Aromatic Amino-Claisen Rearrangements The thermal and acid catalysed rearrangement of p-substituted N-(1′,1′-dimethylallyl)anilines (p-substituent=H (5) , CH3 (6) , iso-C3H7 (7) , Cl (8) , OCH3 (9) , CN (10) ), of N-(1′,1′-dimethylallyl)-2,6-dimethylaniline (11) , of o-substituted N-(1′-methylallyl)anilines (o-substituent=H (12) , CH3 (13) , t-C4H9 (14) , of (E)- and (Z)-N-(2′-butenyl)aniline ((E)- and (Z)- 16 ), of N-(3′-methyl-2′-butenylaniline (17) and of N-allyl- (1) and N-allyl-N-methylaniline (15) was investigated (cf. Scheme 3). The thermal transformations were normally conducted in 3-methyl-2-butanol (MBO), the acid catalysed rearrangements in 2N -0,1N sulfuric acid. - Thermal rearrangements. The N-(1′,1′-dimethylallyl)anilines rearrange in MBO at 200-260° with the exception of the p-cyano compound 10 in a clean reaction to give the corresponding 2-(3′-methyl-2′-butenyl)anilines 22–26 (Table 2 and 3). The amount of splitting into the anilines is <4% ( 10 gives ? 40% splitting). The secondary kinetic deuterium isotope effect (SKIDI) of the rearrangement of 5 and its 2′,3′,3′-d3-isomer 5 amounts to 0.89±0.09 at 260° (Table 4). This indicates that the partial formation of the new s?-bond C(2), C(3′) occurs already in the transition state, as is known from other established [3,3]-sigmatropic rearrangements. The rearrangement of the N-(1′-methylallyl)anilines 12–14 in MBO takes place at 290–310° to give (E)/(Z)-mixtures of the corresponding 2-(2′-Butenyl)anilines ((E)- and (Z)- 30,-31 , and -32 ) besides the parent anilines (5–23%). Since a dependence is observed between the (E)/(Z)-ratio and the bulkiness of the o-substituent (H: (E)- 30 /(Z)- 30 =4,9; t-C4H9: (E)- 32 /(Z)- 32 =35.5; cf. Table 6), it can be concluded, that the thermal amino-Claisen rearrangement occurs preferentially via a chair-like transition state (Scheme 22). Methyl substitution at C(3′) in the allyl chain hinders the thermal amino-Claisen-rearrangement almost completely, since heating of (E)-and (Z)- 16 , in MBO at 335° leads to the formation of the expected 2-(1′-methyl-allyl) aniline (33) to an extent of only 12 and 5%, respectively (Scheme 9). The main reaction (?60%) represents the splitting into aniline. This is the only observable reaction in the case of 17 . The inversion of the allyl chain in 16 - (E)- and (Z)- 30 cannot be detected - indicated that 33 is also formed in a [3, 3]-sigmatropic process. This is also true for the thermal transformation of N-allyl- (1) and N-allyl-N-methylaniline (15) into 2 and 34 , respectively, since the thermal rearrangement of 2′, 3′, 3′-d3- 1 yields 1′, 1′, 2′-d3- 2 exclusively (Table 8). These reaction are accompanied to an appreciable extent by homolysis of the N, C (1′) bond: compound 1 yields up to 40% of aniline and 15 even 60% of N-methylaniline ((Scheme 10 and 11). The activation parameters were determined for the thermal rearrangements of 1, 5, 12 and 15 in MBO (Table 22). All rearrangements show little solvent dependence (Table 5, 7 and 9). The observed ΔH values are in the range of 34-40 kcal/mol and the ΔS values very between -13 to -19 e.u. These values are only compatible with a cyclic six-membered transition state of little polarity. - Acid catalysed rearrangements. - The rearrangement of the N-(1′, 1′-dimethylallyl) anilines 5-10 occurs in 2N sulfuric acid already at 50-70° to give te 2-(3′-methyl-2′-butenyl)anilines 22-27 accompanied by their hydrated forms, i.e. the 2-(3′-hydroxy-3′-methylbutyl) anilines 35-40 (Tables 10 and 11). The latter are no more present when the rearrangement is conducted in 0.1 N sulfuric acid, whilst the rate of rearrangement is practically the same as in 2 N sulfuric acid (Table 12). The acid catalysed rearrangements take place with almost no splitting. The SKIDI of the rearrangement of 5 and 2′, 3′, 3′-d3- 5 is 0.84±0.08 (2 N H2SO4, 67, 5°, cf. Table 13) and thus in accordance with a [3,3]-sigmatropic process which occurs in the corresponding anilinium ions. Consequently, the rearrangement of a 1:1 mixture of 2′, 3′, 3′-d3- 5 and 3, 5-d2- 5 in 2 N sulfuric acid at 67, 5° occurs without the formation of cross-products (Scheme 13). In the acid catalysed rearrangement of the N-1′-methylallyl) anilines 12-14 at 105-125° in 2 N sulfuric acid the corresponding (E)- and (Z)-anilines are the only products formed (Table 14 and 15). Again no splitting is observed. Furthermore, a dependence of the observed (E)/(Z) ratio and the bulkiness of the o-substituent ( H : (E)/(Z)- 30 = 6.5; t- C 4 H 9: (E)- 32 /(Z)- 32 = 90; cf. Table 15) indicates that also in the ammonium-Claisen rearrangement a chair-like transition state is preferentially adopted. In contrast to the thermal rearrangement the acid catalysed transformation in 2 N-O, 1 N sulfuric acid (150-170°) of (E)- and (Z)- 16 as well as of 1 and 15 , occurs very cleanly to yield the corresponding 2-allylated anilines 33, 2 and 34 (Scheme 15 and 18). The amounts of the anilines formed by splitting are <2%. During longer reaction periods hydration of the allyl chain of the products occurs, and in the case of the rearrangement of (E)- and )Z)- 16 the indoline 45 is formed (Scheme 15 and 18). All transformations occur with inversion of the allyl chain. This holds also for the rearrangement of 1 , since 3′, 3′-d2- 1 gives only 1′, 1′-d2- 2 (Scheme 17). The activation parameters were determined for the acid catalysed rearrangement of 1, 5, 12 and 15 in 2 N sulfuric acid (Table 22). The ΔH values of 27-30 kcal-mol and the ΔS values of +9 to -12 e.u. are in agreement with a [3, 3]-sigmatropic process in the corresponding anilinium ions. The acceleration factors (kH+/kΔ) calculated from the activation parameters of the acid catalysed and thermal rearrangements of the anilines are in the order of 105 - 107. They demonstrate that the essential driving force of the ammonium-Claisen rearrangement is the ‘delocalisation of the positive charge’ in the transition state of these rearrangements (cf. Table 23). Solvation effects in the anilinium ions, which can be influenced sterically, also seem to play a role. This is impressively demonstrated by N-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (11) : its rearrangement into 4-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (43) cannot be achieved thermally, but occurs readily at 30° in 2 N sulfuric acid. From a preparative standpoint the acid catalysed rearrangement in 2 N-0, 1 N sulfuric acid of N-allylanilines into 2-allylanilines, or if the o-positions are occupied into 4-allylanilines, is without doubt a useful synthetic method (cf. also [17]).  相似文献   

15.
1H-, 13C-, and 17O-NMR spectra for the 2-substituted enaminones MeC(O)C(Me)?CHNH(t-Bu) ( 1 ), EtC(O)C(Me)?CHNH(t-Bu) ( 2 ), PhC(O)C(Me)?CHNH(t-Bu) ( 3 ), and MeC(O)C(Me)?CHNH(t-Bu) ( 4 ) are reported. These data show that 3 exists mainly in the (E)-form, 4 in (Z)-form, and 1 and 2 as mixtures of both forms. Polar solvents favour the (E)-form. The (Z)- and (E)-forms exist in the 1,2-syn,3,N-anti and 1,2-anti,1,N-anti conformations A and B , respectively. The structures of the (E)- and (Z)-form are confirmed by X-ray crystal-structure determinations of 3 and 4. The shielding of the carbonyl O-atom in the 17O-NMR spectrum by intramolecular H-bonding (ΔλHB) ranging from ?28 to ?41 ppm, depends on the substituents at C(l) and C(2). Crystals of 3 at 90 K are monoclinic. with a = 9.618(2) Å, b = 15.792(3) Å, c = 16.705(3) Å, and β = 94.44(3)°, and the space group is P21/c with Z = 8 (refinement to R = 0.0701 on 3387 independent reflections). Crystals of 4 at 101 K are monoclinic, with a = 16.625(8) Å, b = 8.637(6) Å, c = 11.024(7) Å, and β = 101.60(5)°, and the space group is Cc with Z = 4 (refinement to R = 0.0595 on 2106 independent reflections).  相似文献   

16.
The singlet–triplet energy difference in para-, meta-, and ortho-xylylenes is studied as the interaction of two radical centers through the benzene ring. An SCF perturbative procedure adapted to open-shell systems leads to two benzyl-like nonbonding molecular orbitals (NBMOS ) and to benzene-like occupied and vacant MOS whatever the xylylene isomer. The superposition of these NBMOS in para-, meta-, and ortho-positions and their interaction with the benzene-like MOS lead, at the configuration interaction level, to the following results: The exchange energy (which favors the triplet state) and the charge transfer energy (which favors the singlet state) are important only in the meta-xylylene; the dynamic (or double) spin polarization favors the triplet in meta and the singlet in para and ortho-isomers; the super-exchange energy (which favors the singlet) is important only in para- and ortho-isomers. The above results are independent of the chosen geometry.  相似文献   

17.
The thermal reaction of azulene-1-carbaldehydes 5 and 6 with excess dimethyl acetylenedicarboxylate (ADM) in decalin leads mainly to the formation of (1 + 1) and (1 + 2) adducts arising from the addition of ADM at the seven-membered ring of the azulenes (cf. Schemes 2 and 4). The (1 + 2) adducts are formed in a homo-Diels-Alder reaction of ADM and isomeric tricyclic carbaldehydes which are derived from the primary tricyclic carbaldehydes by reversible [1s5s]-C shifts (cf. Schemes 3 and 5). The thus formed pentacyclic carbaldehydes seem to undergo deep-seated skeletal rearrangements (cf. Scheme 7) which result finally in the formation of the formyl-tetrahydrocyclopenta[bc]acenaphthylene-tetraesters 12 and 19 , respectively. In other cases, e.g., azulene-1-carbaldehydes 7 and 8 (cf. Scheme 8), the thermal reaction with excess ADM furnishes only the already known tetracycfic (1 + 2) adducts of type anti- 26 to ‘anti’- 29 . The thermal reaction of 1,3,4,8-tetramethylazulene ( 9 ) with excess ADM in decalin resulted in the formation of two (1 + 2) and one (1 + 3) adduct in low yields (cf. Scheme 9). The latter turned out to be the 2,6-bridged barrelene derivative 32 . There are structural evidences that 32 is formed by similar pathways as the formyl-tetrahydrocyclopenta[bc]acenaphthylene-tetraesters (cf. Schemes 7 and 11). [2H3]Me-Labelling experiments are in agreement with the proposed mechanisms (cf. Scheme 13).  相似文献   

18.
The sodium salts of (S)-alanine, (S)-phenylalanine, (S)-valine, and (S)-methionine are condensed with pivalaldehyde to imines 5 . Cyclization by treatment with benzoyl chloride in cold CH2Cl2 gives mainly (4:1 to > 99:1) the (2S,4S)-4-alkyl-3-benzoyl-2-(tert-butyl)-1,3-oxazolidin-5-ones ( 6 ; cis-configuration) in high yields (85–95%). The oxazolidinones 6 and 7 are deprotonated with lithium diethylamide (LDEA) in tetrahydrofuran (THF) and alkylated (Mel, benzyl bromide) or hydroxyalkylated (benzaldehyde) to 4,4-disubstituted oxazolidinones 9 and 10 , respectively, with high diastereoselectivity (9:1 to 50:1; relative topicity ul). Hydrolysis of three of the oxazolidinones to amino acids of known configuration and optical purity indicates that little if any racemization occurs in the process.  相似文献   

19.
In this study, a novel method to determine the cloud point temperature variation in aqueous solutions of thermoresponsive homo- and copolymers was developed. Poly(N-vinylcaprolactam) (PVCL) and triblock copolymers of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-vinylcaprolactam)-b-(t-butyl acrylate-co-acrylic acid) (P[(tBA-co-AA)-b-PVCL-b-P(tBA-co-AA)] were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and used as models. The incorporation of AA units (hydrophilic segments) into the polymeric chain of PVCL influenced the phase transition, increasing the cloud point temperature of the final copolymer. The cloud point temperatures of the PVCL and the triblock copolymer P(tBA-co-AA)-b-PVCL-b-P(tBA-co-AA) were determined by measuring the transmittance of aqueous solutions of the polymers in a Turbiscan Lab instrument in the range of 29 to 40 C. This is the first study in which Turbiscan Lab is used to determine the cloud point temperature.  相似文献   

20.
Abstract

The molecular and crystal structure of bis(triphenylbenzylphosphonium)tetrabromocadmate has been determined by x-ray diffractometer data. Crystals are triclinic, space-group Pl with two formula units in a unit-cell of dimensions a = 12.506(6), b = 10.471(5), c = 18.396(13) Å, α = 93.07(4)°, β = 105.75(5)°, γ = 92.58(4)°. The structure was solved by direct and Fourier methods and refined by least-squares techniques to R = 0.061 for 3723 independent observed reflections. The structure consists of tetrabromocadmate (II) anions and triphenylbenzylphosphonium cations, both with a quasi-perfect tetrahedral symmetry around the cadmium and phosphorus atoms. The most significant average bond distances are: Cd-Br, 2.588(2) Å, P[sbnd]C (Phen), 1.794(5) Å and P[sbnd]CH2, 1.806(6) Å. The P[sbnd]C (Phen) bonds are in slightly distorted staggered conformation (gauche-, gauche +, and trans) in respect of the C (Phen)-CH2 bonds of the benzyl residues. The interatomic distances between the ions correspond to the usual Van der Waals distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号