首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
A new strategy for homogeneous detection of DNA hybridization in single-step format was developed based on fluorescence quenching by gold nanoparticles. The gold nanoparticle is functionalized with 5’-thiolated 48-base oligonucleotide (probe sequence), whose 3’-terminus is labeled with fluorescein (FAM), a negatively charged fluorescence dye. The oligonucleotide adopts an extended configuration due to the electrostatic repulsion between negatively charged gold nanoparticle and the FAM-attached probe sequence. After addition of the complementary target sequence, specific DNA hybridization induces a conformation change of the probe from an extended structure to an arch-like configuration, which brings the fluorophore and the gold nanoparticle in close proximity. The fluorescence is efficiently quenched by gold nanoparticles. The fluorescence quenching efficiency is related to the target concentration, which allows the quantitative detection for target sequence in a sample. A linear detection range from 1.6 to 209.4 nmol/L was obtained under the optimized experimental conditions with a detection limit of 0.1 nmol/L. In the assay system, the gold nanoparticles act as both nanoscaffolds and nanoquenchers. Furthermore, the proposed strategy, in which only two DNA sequences are involved, is not only different from the traditional molecular beacons or reverse molecular beacons but also different from the commonly used sandwich hybridization methods. In addition, the DNA hybridization detection was achieved in homogenous solution in a single-step format, which allows real-time detection and quantification with other advantages such as easy operation and elimination of washing steps.  相似文献   

2.
The application of a new fluorogenic probe-based PCR assay (PCR duplex scorpion primer assay) to the detection of Hepatitis B virus (HBV) DNA in human sera was described. Duplex scorpion primer is a modified variant of duplex Amplifluor, and the incorporation of a PCR stopper between probe and primer sequences improve the detection specificity and sensitivity. Combined with PCR amplification, this probe can give unambiguous positive results for the reactions initiated with more than 20 HBV molecules. In addition, the particular unimolecular probing mechanism of this probe makes the use of short target-specific probe sequence possible, which will render this probe applicable in some specific systems.  相似文献   

3.
We present here a p H-responsive activatable aptamer probe for targeted cancer imaging based on i-motif-driven conformation alteration. This p H-responsive activatable aptamer probe is composed of two single-stranded DNA. One was used for target recognition, containing a central, target specific aptamer sequence at the 3′-end and an extension sequence at the 5′-end with 5-carboxytetramethylrhodamine(TAMRA) label(denoted as strand A). The other(strand I), being competent to work on the formation of i-motif structure, contained four stretches of the cytosine(C) rich domain and was labeled with a Black Hole Quencher 2(BHQ2) at the 3′-end. At neutral or slightly alkaline p H, strand I was hybridized to the extension sequence of strand A to form a double-stranded DNA probe, termed i-motif-based activatable aptamer probe(I-AAP). Because of proximityinduced energy transfer, the I-AAP was in a "signal off" state. The slightly acidic p H enforced the strand I to form an intramolecular i-motif and then initiated the dehybridization of I-AAP, leading to fluorescence readout in the target recognition. As a demonstration, AS1411 aptamer was used for MCF-7 cells imaging. It was displayed that the I-AAP could be carried out for target cancer cells imaging after being activated in slightly acidic environment. The applicability of I-AAP for tumor tissues imaging has been also investigated by using the isolated MCF-7 tumor tissues. These results implied the I-AAP strategy is promising as a novel approach for cancer imaging.  相似文献   

4.
This work develops a fluorescence approach for sensitive detection of DNA methyltransferase activity based on endonuclease and rolling circle amplification (RCA) technique. In the presence of DNA adenine methylation (Dam) MTase, the methylation-responsive sequence of hairpin probe is methylated and cleaved by the methylation-sensitive restriction endonuclease Dpn 1. The products cleaved by restriction endonuclease Dpn I then function as a signal primer to initiate RCA reaction by hybridizing with the circular DNA template. Each RCA product containing thousands of repeated sequences might hybridize with a large number of molecular beacons (detection probes), resulting in an enhanced fluorescence signal. In the absence of Dam MTase, neither methylation/cleavage nor RCA reaction can be initiated and no fluorescence signal is observed. The proposed method exhibits a dynamic range from 0.5 U/mL to 30 U/mL and a detection limit of 0.18 U/mL. This method can be used for the screening of antimicrobial drugs and has a great potential to be further applied in early clinical diagnosis.  相似文献   

5.
Introduction The analysis of DNA sequence and DNA mutant detection play fundamental roles in the rapid development of molecular diagnostics and in the anticancer drug screening. Therefor many detection techniques of DNA sequence have been developed in recent years. These techniques mainly depend on the nucleic acid hybridization1 and their sensitivities are related to the specific activity of the label linked to the DNA probe. The degree of hybridization of probe to its complementary DN…  相似文献   

6.
We design a ratiometric fluo rescent sensing platform for bleomycin(BLM) by using proximity-dependent DNA-templated silver nanoclusters(DNA-AgNCs) probe.This ratiometric sensing system is constructed with DNA-AgNCs as single fluorophore.The proposed strategy is based on the two following facts:(1) a covert DNA can approach and transform the DNA-AgNCs with green emission(G-DNA-AgNCs) into red emission through hybridization reaction.(2) The specific cleavage of the convert DNA by BLM in the presence of Fe(Ⅱ) inhibits the discoloration of G-DNA-AgNCs.Thus,benefiting from the specific recognition of BLM and unique properties of G-DNA-AgNCs,a hignly-sensitive ratiometric sensor for BLM has been successfully developed.The detection limit is as low as 30 pmol/L.This label-free fluorescence probe possesses advantages of convenient synthetic process and low cost.Moreover,this ratiometric method has been applied to the detection of BLM in human serum samples,illustrating a promising tool for analysis of BLM in cancer therapy.  相似文献   

7.
Enzyme assisted DNA probes are powerful tools in molecular diagnostics for their simplicity, rapidity,and low detection limit. However, cost of probes, difficulty in optimization and disturbance of secondary structure hindered the wider application of enzyme assisted DNA probes. To solve the problems, we designed a new system named shared-probe system. By introducing two unlabeled single stranded DNA named Sh1 and Sh2 as the bridge between probe and the substrate, the same sequence of dually lab...  相似文献   

8.
N-doped peanut membrane carbon quantum dots (N-CQDs) were prepared by one-step hydrothermal method using peanut membrane and urea as materials. On the basis of investigating the spectral characteristics of the N-CQDs, we found that KMnO4 could cause the fluorescence signal of the N-CQDs to "turn-off" in the B-R buffer system with pH 10. 38. Once hydroquinone was added, the fluorescence signal of the N-CQDs-KMnO4 system gradually recovered and the fluorescence signal "turned on". Based on this, a new "off-on" fluorescence probe method for the detection of hydroquinone-N-CQDs-KMnO4 system was developed. Under the optimized conditions, the recovered fluorescence of N-CQDs was linearly related with the hydroquinone concentration in the range of 0. 10-200 mmol / L, the linear equation was ΔF = 1. 6819c + 153. 84 (r = 0. 9992), with the detection limit of 30 μmol / L. The method has been successfully applied to the determination of hydroquinone in simulated samples. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

9.
A new approach for a simple electrochemical detection of PAT gene fragment is described. Poly(2,6-pyridinedicarboxylic acid) (PDC) modified glassy carbon electrode (GCE) was prepared by potential scan electropolymerization in an aqueous solution. Mg2 ions were incorporated by immer-sion of the modified electrode in 0.5 mol/L aqueous solution of MgCl2 to complete the preparation of a generic "activated" electrode ready for binding the probe DNA. The ssDNA was linked to the conduct-ing polymer by forming a bidentate complex between the carboxyl groups on the polymer and the phosphate groups of DNA via Mg2 . DNA immobilization and hybridization were characterized with dif-ferential pulse voltammetry (DPV) by using methylene blue (MB) as indicator and electrochemical im-pedance spectroscopy (EIS). The EIS was of higher sensitivity for DNA detection as compared with voltammetric methods in our strategy. The electron transfer resistance (Ret) of the electrode surface in EIS in [Fe(CN)6]3-/4- solution increased after the immobilization of the DNA probe on the Mg/PDC/GCE electrode. The hybridization of the DNA probe with complementary DNA (cDNA) made Ret increase further. The difference between the Ret at ssDNA/Mg/PDC/GCE and that at hybridization DNA modified electrode (dsDNA/Mg/PDC/GCE) was applied to determine the specific sequence related to the target PAT gene with the dynamic range comprised between 1.0 × 10-9 and 1.0 × 10_5 mol/L. A detection limit of 3.4 × 10-10 mol/L of oligonucleotides can be estimated.  相似文献   

10.
Design of chemosensors for the selective detection of a specific analyte is a topic of considerable interest, due to their wide ranges of application in broad areas of chemistry and biology1. The development of new method for selective detection for anili…  相似文献   

11.
A separation‐free single‐base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele‐specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5′‐end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite‐converted genomic DNA, and a DNA polymerase. A single base‐extended primer (i.e., SBE product) that was 5′‐Cy3‐ and 3′‐Cy5‐tagged was formed by incorporation of the Cy5‐labeled terminator into the 3′‐end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.  相似文献   

12.
Using stx 2 gene in verotoxin-producing Escherichia coli O157:H7 as a target DNA, polymerase chain reaction (PCR) amplification has been combined with fluorescence polarization (FP) by two distinct combination protocols. The first approach (PCR-probe-FP) requires that fluorescence labeled specific probes are hybridized with the asymmetric PCR product. In the second protocol (PCR-primer-FP), the fluorescence labeled primer is used in PCR amplification. In both methods, the PCR products are detected using fluorescence polarization. Hybridization (in the PCR-probe-FP method) and conversion (in the PCR-primer-FP method) of 5′-fluorescence labeled oligodeoxynucleotide to the PCR product are monitored by an increase in the anisotropy ratio. The results demonstrate the importance of asymmetric PCR (in the first method) and the selection of dye-modified primer concentration (in the second method) for designing a polarization strategy for the detection of DNA sequence. It has been found that the methods can be used for the identification of infectious agents. This system has also been applied to the determination of Escherichia coli O157:H7 strains.  相似文献   

13.
We developed intramolecular dual fluorophore-quencher base analogues for site-specific incorporation into DNA by an unnatural base pair replication system. An unnatural base pair between 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) exhibits high fidelity in PCR amplification, and the 2-nitropyrrole moiety of Px acts as a quencher. Deoxyribonucleoside triphosphates of Px linked with a fluorophore (Cy3, Cy5 or FAM) were chemically synthesized, and the fluorescent properties and the enzymatic incorporation of the fluorophore-linked dPxTPs into DNA were examined in PCR amplification. The fluorophore-linked dPxTPs were site-specifically incorporated by PCR into DNA, opposite Ds in templates, with high selectivity. Furthermore, we found that the fluorescence of the triphosphates was partially quenched, but increased upon their incorporation into DNA. These dual fluorophore-quencher base analogues would be useful for site-specific DNA labeling and for monitoring the amplification products of target nucleic acid molecules with a specific sequence. We have demonstrated the utility of the fluorophore-linked Px substrates and the Ds-Px pairing in real-time quantitative PCR for target DNA molecule detection.  相似文献   

14.
A rapid and ultrasensitive fluorescence aptasensor was developed for the detection of Salmonella paratyphi A based on aptamer and Phi29-DNA polymerase-assisted cyclic signal amplification. The method employed a designed arched probe, consisting of an aptamer and a primer, with a designed hairpin probe. The quenching groups and fluorescent groups were modified at the 3′ and 5′ ends of the hairpin probe, respectively. In the absence of the target, the primer was not released and the hairpin probe was not opened to produce fluorescence. The addition of target led to the release of the primer, which hybridized with the hairpin probe and triggered the chain-displacement polymerase reaction and produced a high fluorescence intensity. Under the optimized conditions, the linear range of this aptasensor was from 102 CFU·mL?1 to 108 CFU·mL?1 with a detection limit of 102 CFU·mL?1. Compared with other reported fluorescence detection methods, this approach has two advantages. First, this fluorescence aptasensor does not require nanomaterials as the quencher, which reduces the cost and saves time. Second, the chain-displacement polymerase reaction was used in this fluorescence aptasensor to amplify the signals, which further enhanced the sensitivity and lowered the detection limit. As this method was suitable for the detection of Salmonella paratyphi A in milk samples and potentially other bacteria, environmental monitoring and related food safety analysis should also be possible by this approach.  相似文献   

15.
We synthesized 2′-deoxycytidine and the corresponding nucleoside triphosphate bearing (indol-3-yl)methylene-2-methyl-5-oxo-4,5-dihydroimidazol-1-yl group (a tryptophan-based fluorophore from cyan fluorescent protein) linked through a propargyl group at position 5. The fluorophore is weakly solvatochromic, sensitive to pH, and, as a molecular rotor, it is highly sensitive to viscosity. In low viscosity solvents, the fluorescence is very weak, whereas in more viscous environment it lights up. Primer extension or PCR using the modified dCTrpTP and KOD XL DNA polymerase was used for construction of labelled oligonucleotides and DNA. Preliminary study showed a 2-fold increase of fluorescence of labelled ON probe in presence of single strand-binding protein indicating a potential of this label for sensing of protein-DNA interactions.  相似文献   

16.
Many genomics assays use profluorescent oligonucleotide probes that are covalently labeled at the 5' end with a fluorophore and at the 3' end with a quencher. It is generally accepted that quenching in such probes without a stem structure occurs through F?rster resonance energy transfer (FRET or FET) and that the fluorophore and quencher should be chosen to maximize their spectral overlap. We have studied two dual-labeled probes with two different fluorophores, the same sequence and quencher, and with no stem structure: 5'Cy3.5-beta-actin-3'BHQ1 and 5'FAM-beta-actin-3'BHQ1. Analysis of their absorption spectra, relative fluorescence quantum yields, and fluorescence lifetimes shows that static quenching occurs in both of these dual-labeled probes and that it is the dominant quenching mechanism in the Cy3.5-BHQ1 probe. Absorption spectra are consistent with the formation of an excitonic dimer, an intramolecular heterodimer between the Cy3.5 fluorophore and the BHQ1 quencher.  相似文献   

17.
We propose a binary fluorimetric method for DNA and RNA analysis by the combined use of two probes rationally designed to work cooperatively. One probe is an oligonucleotide (ODN) conjugate bearing a β‐cyclodextrin (β‐CyD). The other probe is a small reporter ligand, which comprises linked molecules of a nucleobase‐specific heterocycle and an environment‐sensitive fluorophore. The heterocycle of the reporter ligand recognizes a single nucleobase displayed in a gap on the target labeled with the conjugate and, at the same time, the fluorophore moiety forms a luminous inclusion complex with nearby β‐CyD. Three reporter ligands, MNDS (naphthyridine–dansyl linked ligand), MNDB (naphthyridine–DBD), and DPDB (pyridine–DBD), were used for DNA and RNA probing with 3′‐end or 5′‐end modified β‐CyD – ODN conjugates. For the DNA target, the β‐CyD tethered to the 3′‐end of the ODN facing into the gap interacted with the fluorophore sticking out into the major groove of the gap site ( MNDS and DPDB ). Meanwhile the β‐CyD on the 5′‐end of the ODN interacted with the fluorophore in the minor groove ( MNDB and DPDB ). The results obtained by this study could be a guideline for the design of binary DNA/RNA probe systems based on controlling the proximity of functional molecules.  相似文献   

18.
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号