首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Supramolecular photosynthetic systems made up of the [Ir(ppy)(2)(bpy)](+) and [Co(bpy)(3)](2+) cores (ppy = 2-phenylpyridinate, bpy = 2,2'-bipyridine) are in situ self-assembled in aqueous media to generate H(2) upon visible light irradiation, where one of them recorded a relatively high turnover number of 20.  相似文献   

2.
The synthesis of [Ru(NO(2))L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO)L(bpy)(2)](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO(2))L(bpy)(2)](+) in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around -0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at -0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mumol L(-1) phenylephrine responded with relaxation in the presence of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The potential of rat aorta cells to metabolize cis-[Ru(II)(NO(2))L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[Ru(II)(NO(2))L(bpy)(2)](+) complex.  相似文献   

3.
Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.  相似文献   

4.
The interaction of two luminescent metallopolymers; [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP)co-poly(7)](+), where bpy is 2,2'-bipyridyl, PVP is polyvinylpyridine, and (CAIP)co-poly(7) is poly(styrene(6)-co-p-(aminomethyl)styrene) amide linked to 2-(4-carboxyphenyl)imidazo[4,5-f] [1,10]phenanthroline, with the Dawson polyoxomolybdate α-[Mo(18)O(54)(SO(4))(2)](4-) is described. Both metallopolymers undergo electrostatic association with the polyoxometalate. From both electronic and luminescence spectroscopy the thermodynamic products were determined to be {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) and {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+), i.e. in both instances, the number of ruthenium centres in the cluster exceeds the number required for charge neutralization of the molybdate centre. Association quenches the luminescence of the metallopolymer although, consistent with the excess of Ru(ii) present in the associated composites, emission is not completely extinguished even when a large excess of [Mo(18)O(54)(SO(4))(2)](4-) is present. The observed emission lifetime was not affected by [Mo(18)O(54)(SO(4))(2)](4-) therefore quenching was deemed static. The luminescent intensity data was found to fit best to a (sphere of action) Perrin model from which the radii of the quenching were calculated as 4.6 ? and 5.8 ? for [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP co-poly)(7)](+) respectively. Both UV/Vis and resonance Raman data indicate the presence of a new optical transition centered around 490 nm for the composite, {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). This indicates strong electronic interaction between the metal centres in the former composite, which despite good thermodynamic analogy, is not observed for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). These results are consistent with photoelectrochemical studies of layer by layer assemblies of these films which indicate that the ruthenium centre sensitizes polyoxometalate photo-oxidation of benzyl alcohol in {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not in {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+).  相似文献   

5.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

6.
A tungsten trioxide (WO(3))/tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+); bpy=2,2'-bipyridine)/poly(sodium 4-styrenesulfonate) (PSS) hybrid film was prepared by electrodeposition from a colloidal triad solution containing peroxotungstic acid (PTA), [Ru(bpy)(3)](2+), and PSS. A binary solution of [Ru(bpy)(3)](2+) and PTA (30 vol % ethanol in water) gradually gave an orange precipitate, possibly caused by the electrostatic interaction between the cationic [Ru(bpy)(3)](2+) and the anionic PTA. The addition of PSS to the binary PTA/[Ru(bpy)(3)](2+) solution remarkably suppressed this precipitation and caused a stable, colloidal triad solution to form. The spectrophotometric measurements and lifetime analyses of the photoluminescence from the excited [Ru(bpy)(3)](2+) ion in the colloidal triad solution suggested that the [Ru(bpy)(3)](2+) ion is partially shielded from electrostatic interaction with anionic PTA by the anionic PSS polymer chain. The formation of the colloidal triad made the ternary [Ru(bpy)(3)](2+)/PTA/PSS solution much more redox active. Consequently, the rate of electrodeposition of WO(3) from PTA increased appreciably by the formation of the colloidal triad, and fast electrodeposition is required for the unique preparation of this hybrid film. The absorption spectrum of the [Ru(bpy)(3)](2+) ion in the film was close to its spectrum in water, but the photoexcited state of the [Ru(bpy)(3)](2+) ion was found to be quenched completely by the presence of WO(3) in the hybrid film. The cyclic voltammogram (CV) of the hybrid film suggested that the [Ru(bpy)(3)](2+) ion performs as it is adsorbed onto WO(3) during the electrochemical oxidation. An ohmic contact between the [Ru(bpy)(3)](2+) ion and the WO(3) surface could allow the electrochemical reaction of adsorbed [Ru(bpy)(3)](2+). The composition of the hybrid film, analyzed by electron probe microanalysis (EPMA), suggested that the positive charge of the [Ru(bpy)(3)](2+) ion could be neutralized by partially reduced WO(3)(-) ions, in addition to Cl(-) and PSS units, based on the charge balance in the film. The electrostatic interaction between the WO(3)(-) ion and the [Ru(bpy)(3)](2+) ion might be responsible for forming the electron transfer channel that causes the complete quenching of the photoexcited [Ru(bpy)(3)](2+) ion, as well as the formation of the ohmic contact between the [Ru(bpy)(3)](2+) ion and WO(3). A multicolor electrochromic performance of the WO(3)/[Ru(bpy)(3)](2+)/PSS hybrid film was observed, in which transmittances at 459 and 800 nm could be changed, either individually or at once, by the selection of a potential switch. Fast responses, of within a few seconds, to these potential switches were exhibited by the electrochromic hybrid film.  相似文献   

7.
Zhang W  Zhao D  Zhang R  Ye Z  Wang G  Yuan J  Yang M 《The Analyst》2011,136(9):1867-1872
Electrochemiluminescence (ECL) detection technique using bipyridine-ruthenium(II) complexes as probes is a highly sensitive and widely used method for the detection of various biological and bioactive molecules. In this work, the spectral, electrochemical and ECL properties of a chemically modified bipyridine-ruthenium(II) complex, [Ru(bpy)(2)(dabpy)](2+) (bpy: 2,2'-bipyridine; dabpy: 4-(3,4-diaminophenoxy)-2,2'-bipyridine), were investigated and compared with those of its nitric oxide (NO)-reaction derivative [Ru(bpy)(2)(T-bpy)](2+) (T-bpy: 4-triazolephenoxy-2,2'-bipyridine) and [Ru(bpy)(3)](2+). It was found that the ECL intensity of [Ru(bpy)(2)(dabpy)](2+) could be selectively and sensitively enhanced by NO due to the formation of [Ru(bpy)(2)(T-bpy)](2+) in the presence of tri-n-propylamine. By using [Ru(bpy)(2)(dabpy)](2+) as a probe, a sensitive and selective ECL method with a wide linear range (0.55 to 220.0 μM) and a low detection limit (0.28 μM) was established for the detection of NO in aqueous solutions and living cells. The results demonstrated the utility and advantages of the new ECL probe for the detection of NO in complicated biological samples.  相似文献   

8.
Intermolecular electron and energy transfer from a light-harvesting metallodendrimer [Ru[bpy(C-450)(4)](3)](2+), where bpy(C-450)(4) is a 2,2'-bipyridine derivative containing 4 coumarin-450 units connected together through aryl ether linkages, is observed in acetonitrile solutions at room temperature. The model complex [Ru(dmb)(3)](2+), where dmb is 4,4'-dimethyl-2,2'-bipyridine, is included for quantitative comparison. The excited states of both compounds are metal-to-ligand charge transfer in nature and participate in excited-state electron and triplet energy transfer processes. Quenching constants were determined from luminescence and time-resolved absorption experiments at constant ionic strength. [Ru[bpy(C-450)(4)](3)](2+) displays significantly slower quenching rates to molecular oxygen and methyl viologen relative to the other processes investigated. Triplet energy transfer from [Ru[bpy(C-450)(4)](3)](2+) to 9-methylanthracene is quantitatively indistinguishable from [Ru(dmb)(3)](2+) while reductive electron transfer from phenothiazine was slightly faster in the former. With the exception of dioxygen quenching, our results indicate that the current dendritic structure is ineffective in shielding the core from bimolecular electron and triplet energy transfer reactions. Electrochemical measurements of [Ru[bpy(C-450)(4)](3)](2+) reveal irreversible oxidative processes at potentials slightly negative to the Ru(III/II) potential that are assigned to oxidations in the dendritic structure. Excited-state oxidative electron-transfer reactions facilitate this process resulting in the reduction of ground-state Ru(III) to Ru(II) and the trapping of the methyl viologen radical cation (MV(*+)) when methyl viologen serves as the quencher. This process generates a minimum of 9 MV(*+)'s for every [Ru[bpy(C-450)(4)](3)](2+) molecule and disassembles the metallodendrimer, resulting in the production of a [Ru(dmb)(3)](2+)-like species and "free" C-450-like dyes.  相似文献   

9.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

10.
Herein, the development of visible light-mediated atom transfer radical addition (ATRA) of haloalkanes onto alkenes and alkynes using the reductive and oxidative quenching of [Ir{dF(CF(3))ppy}(2)(dtbbpy)]PF(6) and [Ru(bpy)(3)]Cl(2) is presented. Initial investigations indicated that the oxidative quenching of photocatalysts could effectively be utilized for ATRA, and since that report, the protocol has been expanded by broadening the scope of the reaction in terms of the photocatalysts, substrates, and solvents. In addition, further modifications of the reaction conditions allowed for the efficient ATRA of perfluoroalkyl iodides onto alkenes and alkynes utilizing the reductive quenching cycle of [Ru(bpy)(3)]Cl(2) with sodium ascorbate as the sacrificial electron donor. These results signify the complementary nature of the oxidative and reductive quenching pathways of photocatalysts and the ability to predictably direct reaction outcome through modification of the reaction conditions.  相似文献   

11.
Octahedral tris-chelate complexes [M(II)(bpy)(3)](2+) (M = Ru or Os, bpy = 2,2'-bipyridyl), covalently attached to the 3'- and 5'-phosphates of two oligonucleotides, are juxtaposed when hybridized contiguously to a fully complementary DNA target. Visible metal-to-ligand charge-transfer (MLCT) excitation of the [Ru(II)(bpy)(3)](2+) unit leads to resonance energy transfer to the MLCT state of the [Os(II)(bpy)(3)](2+) moiety, with the energy transfer efficiency depending on the degree of hybridization. The extent of attenuation of the intense red luminescence from the Ru(II) chromophore hence allows highly sensitive structural probing of the assembly and constitutes a novel approach to DNA sensing which is capable of detecting mutations.  相似文献   

12.
[Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) ions were entrapped into the cavities of two-dimensional anionic sheet-like coordination polymeric networks of [M(dca)(3)](-) (dca = dicyanamide; M = Mn(II) and Fe(II)). The prepared compounds, {[Ru(bpy)(3)][Mn(dca)(3)](2)}(n) (1) and {[Ru(bpy)(3)][Fe(dca)(3)](2)}(n) (2), were structurally characterized by X-ray single crystal analysis. The spectroscopic properties of the [Ru(bpy)(3)](2+) ion dramatically changed on its entrapment in [M(dca)(3)](-). The [Ru(bpy)(3)](2+) moiety present in 1 and 2 exhibits novel dual photo-emission at room temperature.  相似文献   

13.
Pt nanoparticles of 2-3 nm and 5-6 nm in diameter were loaded into stable, porous, and phosphorescent metal-organic frameworks (MOFs 1 and 2) built from [Ir(ppy)(2)(bpy)](+)-derived dicarboxylate ligands (L(1) and L(2)) and Zr(6)(μ(3)-O)(4)(μ(3)-OH)(4)(carboxylate)(12) secondary building units, via MOF-mediated photoreduction of K(2)PtCl(4). The resulting Pt@MOF assemblies serve as effective photocatalysts for hydrogen evolution by synergistic photoexcitation of the MOF frameworks and electron injection into the Pt nanoparticles. Pt@2 gave a turnover number of 7000, approximately five times the value afforded by the homogeneous control, and could be readily recycled and reused.  相似文献   

14.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

15.
Dennany L  Keyes TE  Forster RJ 《The Analyst》2008,133(6):753-759
Luminescence quenching of the metallopolymers [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+), both in solution and as thin films, is reported, where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine). When the metallopolymer is dissolved in ethanol, quenching of the ruthenium excited state, Ru(2+*), within [Ru(bpy)(2)(PVP)(10)](2+) by [Os(bpy)(3)](2+) proceeds by a dynamic quenching mechanism and the rate constant is (1.1 +/- 0.1) x 10(11) M(-1) s(-1). This quenching rate is nearly two orders of magnitude larger than that found for quenching of monomeric [Ru(bpy)(3)](2+) under the same conditions. This observation is interpreted in terms of an energy transfer quenching mechanism in which the high local concentration of ruthenium luminophores leads to a single [Os(bpy)(3)](2+) centre quenching the emission of several ruthenium luminophores. Amplifications of this kind will lead to the development of more sensitive sensors based on emission quenching. Quenching by both [Os(bpy)(3)](2+) and molecular oxygen is significantly reduced within a thin film of the metallopolymer. Significantly, in both optically driven emission and electrogenerated chemiluminescence, emission is observed from both ruthenium and osmium centres within [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+) films, i.e. the ruthenium emission is not quenched by the coordinated [Os(bpy)(2)](2+) units. This observation opens up new possibilities in multi-analyte sensing since each luminophore can be used to detect separate analytes, e.g. guanine and oxoguanine.  相似文献   

16.
Binuclear complexes with cyclometalated ends of the [Ru(bpy)(2)(ppH)](+) type (bpy = 2,2'-bipyridine, ppH = 2-phenylpyridine), linked by various spacers, have been prepared. These spacers are made of one or two triple bonds, or bis-ethynyl aryl groups, with aryl = benzene, thiophene, or anthracene. The complexes with bis-ethynyl aryl spacers are obtained by Sonogashira couplings with suitable bis-alkynes, starting from the [Ru(bpy)(2)(ppBr)](+) synthon. Complexes with one or two triple bonds are obtained from the true alkyne [Ru(bpy)(2)(pp-CCH)](+) cyclometalated precursor, using respectively a Sonogashira coupling with the iodo derivative [Ru(bpy)(2)(ppI)](+), or an oxidative homocoupling. Some complexes with tert-butyl-substituted bipyridine ancillary ligands have also been obtained. Oxidation of the binuclear complexes occurs near 0.5 V, i.e., more easily than with [Ru(bpy)(3)](2+)-based complexes. A single anodic wave is observed, with almost no detectable splitting, corresponding to two closely spaced one-electron processes. Differential pulse voltammetry allows the determination of the corresponding comproportionation constants involving the mixed valence Ru(II)[bond]Ru(III) forms. Controlled potential electrolysis yields the mixed valence forms in comproportionation equilibrium with homovalent forms. Analysis of the intervalence transitions allows the calculation of the electronic coupling element V(ab). This series of complexes exhibit relatively large couplings when comparing with complexes of similar metal-metal distances, with a special mention for the anthracene-containing spacer, which appears particularly efficient for mediating the metal-metal interaction. The results can be rationalized by theoretical calculations at the extended Hückel level.  相似文献   

17.
A [Ru(bpy)(3)](2+) (bpy=2,2'-bipyridine)-doped WO(3) film was prepared as a base layer on a substrate by cathodic electrodeposition from a colloidal triad solution containing peroxotungstic acid (PTA), [Ru(bpy)(3)](2+), and poly(sodium 4-styrenesulfonate) (PSS). A Prussian blue (PB; Fe(II)-Fe(III)) film was cathodically electrodeposited on the [Ru(bpy)(3)](2+)-doped WO(3) film or neat WO(3) film from an aqueous Berlin brown (BB; Fe(III)-Fe(III)) colloid solution to yield a [Ru(bpy)(3)](2+)-doped WO(3)/PB bilayer film or WO(3)/PB bilayer film. For the spectrocyclic voltammogram (SCV) of the WO(3)/PB film, a redox response of Prussian white (PW; Fe(II)-Fe(II))/PB was observed at 0.11 V, however, further oxidation of PB to BB was not allowed by the interfacial n-type Schottky barrier between the WO(3) and PB layers. For the [Ru(bpy)(3)](2+)-doped WO(3)/PB film, any electrochemical response assigned to the redox of PB was not observed in the cyclic voltammogram, however, the in situ absorption spectral change recorded simultaneously showed the significant redox reactions based on PB. The SCV revealed that PW on the [Ru(bpy)(3)](2+)-doped WO(3) film is completely oxidized to PB by a geared reaction of Ru(II)/Ru(III) at 1.05 V, and that 32 % of PB formed is further oxidized to BB by the same geared reaction in the potential scan to 1.5 V. PB was completely re-reduced to PW by a geared reaction of H(x)WO(3)/WO(3) at -0.5 V in the reductive potential scan. These geared electrochemical reactions produced an electrochromic hysteresis performance of the PB film layered on the [Ru(bpy)(3)](2+)-doped WO(3) film.  相似文献   

18.
The physical and photophysical properties of a series of monometallic, [Ru(bpy)(2)(dmb)](2+), [Ru(bpy)(2)(BPY)](2+), [Ru(bpy)(Obpy)](2+) and [Ru(bpy)(2)(Obpy)](2+), and bimetallic, [{Ru(bpy)(2)}(2)(BPY)](4+) and [{Ru(bpy)(2)}(2)(Obpy)](4+), complexes are examined, where bpy is 2,2'-bipyridine, dmb is 4,4'-dimethyl-2,2'-bipyridine, BPY is 1,2-bis(4-methyl-2,2'-bipyridin-4'-yl)ethane, and Obpy is 1,2-bis(2,2'-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nm region, intraligand pi --> pi transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at -1.3 V and ending at approximately -1.9 V, and emission from a (3)MLCT state having energy maxima between 598 and 610 nm. The Ru(III)/Ru(II) oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy)(2)(BPY)](2+), the Ru(III)/Ru(II) potential for [Ru(bpy)(2)(Obpy)](2+) increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3 ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [{Ru(bpy)(2)}(2)(BPY)](4+), the Ru(III)/Ru(II) potential for [{Ru(bpy)(2)}(2)(Obpy)](4+) increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26. Emission lifetimes measured in 4:1 ethanol:methanol were temperature dependent over 90-360 K. In the fluid environment, emission lifetimes display a biexponential energy dependence ranging from 100 to 241 cm(-)(1) for the first energy of activation and 2300-4300 cm(-)(1) for the second one. The smaller energy is attributed to changes in the local matrix of the chromophores and the larger energy of activation to population of a higher energy dd state. Explanations for the variations in physical properties are based on molecular mechanics calculations which reveal that the Ru-N bond distance increases from 2.05 ? (from Ru(II) to bpy and BPY) to 2.08 ? (from Ru(II) to Obpy) and that the metal-to-metal distance increases from approximately 7.5 ? for [{Ru(bpy)(2)}(2)(Obpy)](4+) to approximately 14 ? for [{Ru(bpy)(2)}(2)(BPY)](4+).  相似文献   

19.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

20.
We report the synthesis of π-bonded ruthenium, rhodium, and iridium o-benzoquinones [Cp*M(o-C(6)H(4)O(2))](n) [M = Ru (2), n = 1-; Rh (3), n = 0; Ir (4), n = 0] following a novel synthetic procedure. Compounds 2-4 were fully characterized by spectroscopic methods and used as chelating organometallic linkers, "OM-linkers", toward luminophore bricks such as Ru(bpy)(2)(2+), Rh(ppy)(2)(+), and Ir(ppy)(2)(+) (bpy = 2,2'-bipyridine; ppy = 2-phenylpyridine) for the design of a novel family of octahedral bimetallic complexes of the general formula [(L-L)(2)M(OM-linkers)][X](m) (X = counteranion; m = 0, 1, 2) whose luminescent properties depend on the choice of the OM-linker and the luminophore brick. Thus, dinuclear assemblies such as [(bpy)(2)Ru(2)][OTf] (5-OTf), [(bpy)(2)Ru(2)][Δ-TRISPHAT] (5-ΔT) {TRISPHAT = tris[tetrachlorobenzene-1,2-bis(olato)]phosphate}, [(bpy)(2)Ru(3)][OTf](2) (6-OTf), [(bpy)(2)Ru(4)][OTf](2) (7-OTf), [(bpy)(2)Ru(4)][Δ-TRISPHAT](2) (7-ΔT), [(ppy)(2)Rh(2)] (8), [(ppy)(2)Rh(3)][OTf] (9-OTf), [(ppy)(2)Rh(4)][OTf] (10-OTf), [(ppy)(2)Rh(4)][Δ-TRISPHAT] (10-ΔT), [(ppy)(2)Ir(2)] (11), [(ppy)(2)Ir(3)][OTf] (12-OTf), [(ppy)(2)Ir(4)][OTf] (13-OTf), and [(ppy)(2)Ir(4)][Δ-TRISPHAT] (13-ΔT) were prepared and fully characterized. The X-ray molecular structures of three of them, i.e., 5-OTf, 8, and 11, were determined. The structures displayed a main feature: for instance, the two oxygen centers of the OM-linker [Cp*Ru(o-C(6)H(4)O(2))](-) (2) chelate the octahedral chromophore metal center, whether it be ruthenium, rhodium, or iridium. Further, the carbocycle of the OM-linker 2 adopts a η(4)-quinone form but with some catecholate contribution due to metal coordination. All of these binuclear assemblies showed a wide absorption window that tailed into the near-IR (NIR) region, in particular in the case of the binuclear ruthenium complex 5-OTf with the anionic OM-linker 2. The latter feature is no doubt related to the effect of the OM-linker, which lights up the luminescence in these homo- and heterobinuclear compounds, while no effect has been observed on the UV-visible and emission properties because of the counteranion, whether it be triflate (OTf) or Δ-TRISPHAT. At low temperature, all of these compounds become luminescent; remarkably, the o-quinonoid linkers [Cp*M(o-C(6)H(4)O(2))](n) (2-4) turn on red and NIR phosphorescence in the binuclear octahedral species 5-7. This trend was even more observable when the ruthenium OM-linker 2 was employed. These assemblies hold promise as NIR luminescent materials, in contrast to those made from organic 1,2-dioxolene ligands that conversely are not emissive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号