首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
Recently, efforts have been made to reduce the size of food particles containing functional ingredients, since reducing the size is expected to improve intestinal absorption. However, the absorption mechanisms have yet to be fully clarified. Therefore, a microscopy-based method for studying interactions between the particles and intestinal cells is required. We optimized the experimental conditions for observing gold nanoparticles (AuNPs) on the surface of an unfixed Caco-2 cell using dark-field microscopy (DFM). Tight junctions were clearly visible with AuNPs on the cells, producing intense scattered light under DFM. This suggests that AuNPs could be used as localization markers to visualize particle absorption through Caco-2 cells.  相似文献   

2.
Application of a voltage bias between the tip of an atomic force microscope (AFM) and a silicon substrate causes the localized modification of a specially designed self-assembled monolayer (SAM), transforming a surface-bound thiocarbonate into a surface-bound thiol. The resulting surface-bound thiols are used to direct the patternwise self-assembly of gold nanoparticles (AuNPs). This methodology is applied to deposit individual AuNPs onto a surface with nanometer precision and to produce 10 nm lines of closely spaced AuNPs that are a single nanoparticle in width.  相似文献   

3.
Oxygenation of phenylboronic acid to phenol is promoted by thiol derivatives such as 2-aminothiophenol under aerobic conditions in water without metal catalyst. A plausible mechanism involves autoxidation of thiol to generate hydrogen peroxide in situ, which converts phenylboronic acid into phenol under basic conditions. Since thiols are often utilized as protective ligands for gold nanoparticles (AuNPs), this result is a warning that excess thiols and free thiols liberated from the Au surface could participate in aerobic oxidations catalyzed by thiol-protected AuNPs.  相似文献   

4.
Colors of scattering light of single gold nanoparticles (AuNPs) were coded with the tricolor (RGB) system by assigning digital values to R, G and B and then this was applied to binding studies of thiols to AuNPs through RGB analysis.  相似文献   

5.
We investigated the cellular uptake behavior of non-fluorescent metal nanoparticles (NPs) by use of surface-enhanced Raman scattering (SERS) combined with dark-field microscopy (DFM). The uptake of Au NPs inside a single cell could also be identified by DFM first and then confirmed by z-depth-dependent SERS at micrometer resolution. Guided by DFM for the location of Au NPs, an intracellular distribution assay was possible using Raman dyes with unique vibrational marker bands in order to identify the three-dimensional location inside the single cell by obtaining specific spectral features. Au NPs modified by 4-mercaptobenzoic acid (MBA) bearing its –COOH surface functional group were used to conjugate transferrin (Tf) protein using the 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) reaction. The protein conjugation reaction on Au surfaces was examined by means of color change, absorption spectroscopy, and SERS. Our results demonstrate that DFM techniques combined with SERS may have great potential for monitoring biological processes with protein conjugation at the single-cell level.  相似文献   

6.
Thiolate self-assembly on gold has proven to be a valuable technique for assembling monolayers on a wide variety of substrates. However, the oxidative instability of the thiols, especially aromatic thiols and alpha,omega-dithiols, presents several difficulties. Shown here is that thiocyanates, easily synthesized stable thiol derivatives, can be directly assembled on gold surfaces with no auxiliary reagents required. Assembly is complete in 24 h and leaves a similar gold thiolate structure as seen in typical thiol self-assembled monolayers.  相似文献   

7.
Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs’ shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV–vis spectra of AuNPs are changed. We employed the digital mapping approach to analyze the spectral variations with statistical and chemometric methods, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The proposed array could successfully differentiate biological molecules (e.g., cysteine, glutathione and glutathione disulfide) from other potential interferences such as amino acids in the concentration range of 10–800 μmol L−1.  相似文献   

8.
The factors that are responsible for the relatively low glutathione peroxidase (GPx)-like antioxidant activity of organoselenium compounds such as ebselen (1, 2-phenyl-1,2-benzisoselenazol-3(2H)-one) in the reduction of hydroperoxides with aromatic thiols such as benzenethiol and 4-methylbenzenethiol as cosubstrates are described. Experimental and theoretical investigations reveal that the relatively poor GPx-like catalytic activity of organoselenium compounds is due to the undesired thiol exchange reactions that take place at the selenium center in the selenenyl sulfide intermediate. This study suggests that any substituent that is capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds such as ebselen. It is proved that the use of thiol having an intramolecularly coordinating group would enhance the biological activity of ebselen and other organoselenium compounds. The presence of strong S...N or S...O interactions in the selenenyl sulfide state can modulate the attack of an incoming nucleophile (thiol) at the sulfur atom of the -Se-S- bridge and enhance the GPx activity by reducing the barrier for the formation of the active species selenol.  相似文献   

9.

A simple, rapid and sensitive fluorescence resonance energy transfer (FRET) method is presented for the determination of thiols. It is based on the thiol-induced enhancement effect of the surfactant sodium dodecyl sulfate (SDS) on the efficiency of fluorescence resonance energy transfer (FRET) in nanospheres consisting of a magnetic (Fe3O4) core and a phenol-formaldehyde resin (PFR) shell containing gold nanoparticles (AuNPs). The luminescence of the core-shell nanospheres at excitation/emission wavelengths of 390/445 nm, respectively, is quenched by the AuNPs which act as energy acceptors. The interaction of AuNPs with thiol compounds in the presence of SDS suppresses FRET and gives rise to a fluorescent signal whose intensity is proportional to the thiol concentration. The analytical features of seven thiols (homocysteine, thioglycolic acid, glutathione, dodecanethiol, cysteamine, cysteine and N-acetylcysteine) were studied. Detection limits are in the range from 0.14 to 0.49 μmol L−1. The precision of the method, expressed as the relative standard deviation, ranges from 0.4 to 4.9 %. The method was applied to the determination of total thiols in water samples with recovery values between 88.7 and 104.6 %.

The fluorescence resonance energy transfer in magnetic-resin core-shell nanospheres coated with gold nanoparticles is inhibited by thiol compounds in the presence of sodium dodecyl sulfate. This gives rise to a fluorescent signal whose intensity is proportional to the thiol concentration.

  相似文献   

10.
A new type of sensor was built by synthesizing a long-chain thiol functionalized with an aromatic head group and grafting it onto a gold surface. The synthesis route is here described, together with the IR, MS, and RMN analysis of the new product. Adsorption of the latter onto gold was assessed by a combination of RAIRS and XPS data. Those reveal that a monolayer of thiol is adsorbed and oriented with the benzene groups toward the external part of the layer. Detection tests were performed in various atmospheres by QCM. The response shows good sensitivity to 2,4-dinitrotrifluoromethoxybenzene as a model of nitroaromatic compound.  相似文献   

11.
The folding of disulfide containing proteins from denatured protein to native protein involves numerous thiol-disulfide interchange reactions. Many of these reactions include a redox buffer, which is a mixture of a thiol (RSH) and the corresponding disulfide (RSSR). The relationship between the structure of RSH and its efficacy in folding proteins in vitro has been investigated only to a limited extent. Reported herein are the effects of aliphatic and especially aromatic thiols on reactions that occur during protein folding. Aromatic thiols may be particularly efficacious as their thiol pK(a) values and reactivities match those of the in vivo catalyst, protein disulfide isomerase (PDI). This investigation correlates the thiol pK(a) values of aromatic thiols with their reactivities toward small molecule disulfides and the protein insulin. The thiol pK(a) values of nine para-substituted aromatic thiols were measured; a Hammett plot constructed using sigma(p-) values yielded rho = -1.6 +/- 0.1. The reactivities of aromatic and aliphatic thiols with 2-pyridyldithioethanol (2-PDE), a small molecule disulfide, were determined. A plot of reactivity versus pK(a) of the aromatic thiols had a slope (beta) of 0.9. The ability of these thiols to reduce (unfold) the protein insulin correlates strongly with their ability to reduce 2-PDE. Since the reduction of protein disulfides occurs during protein folding to remove mismatched disulfides, aromatic thiols with high pK(a) values are expected to increase the rate not only of protein unfolding but protein folding as well.  相似文献   

12.
Spatial and electronic structure of gold nanoparticles (AuNPs) and AuNPs with thiol base self-assambled monolayers (SAMs) are reviewed. Theoretical and experimental data on the symmetry, bond lengths, band gaps and binding energies are presented. Coordination of sulfur and its compounds to Au structures and AuS bond length emphasized especially. The works on synthesis of thiol based SAMs on AuNPs are reviewed. The applications of EXAFS and photoelectron spectroscopy for the investigated SAMs on AuNPs are considered.  相似文献   

13.
A molecularly thin layer of 2‐aminobenzenethiol (2‐ABT) was adsorbed onto nanoporous p‐type silicon (b‐Si) photocathodes decorated with Ag nanoparticles (Ag NPs). The addition of 2‐ABT alters the balance of the CO2 reduction and hydrogen evolution reactions, resulting in more selective and efficient reduction of CO2 to CO. The 2‐ABT adsorbate layer was characterized by Fourier transform infrared (FTIR) spectroscopy and modeled by density functional theory calculations. Ex situ X‐ray photoelectron spectroscopy (XPS) of the 2‐ABT modified electrodes suggests that surface Ag atoms are in the +1 oxidation state and coordinated to 2‐ABT via Ag?S bonds. Under visible light illumination, the onset potential for CO2 reduction was ?50 mV vs. RHE, an anodic shift of about 150 mV relative to a sample without 2‐ABT. The adsorption of 2‐ABT lowers the overpotentials for both CO2 reduction and hydrogen evolution. A comparison of electrodes functionalized with different aromatic thiols and amines suggests that the primary role of the thiol group in 2‐ABT is to anchor the NH2 group near the Ag surface, where it serves to bind CO2 and also to assist in proton transfer.  相似文献   

14.
The Au?S bond is the classic way to functionalize gold nanoparticles (AuNPs). However, cleavage of the bond by biothiols and other chemicals is a long‐standing problem hindering practical applications, especially in cells. Instead of replacing the thiol by a carbene or selenol for stronger adsorption, it is now shown that the Pt?S bond is much more stable, fully avoiding cleavage by biothiols. AuNPs were deposited with a thin layer of platinum, and an AuNP@Pt‐S nanoflare was constructed to detect the miRNA‐21 microRNA in living cells. This design retained the optical and cellular uptake properties of DNA‐functionalized AuNPs, while showing high‐fidelity signaling. It discriminated target cancer cells even in a mixed‐cell culture system, where the Au‐S based nanoflare was less sensitive. Compared to previous methods of changing the ligand chemistry, coating a Pt shell is more accessible, and previously developed methods for AuNPs can be directly adapted.  相似文献   

15.
The interaction between DNA and inorganic surfaces has attracted intense research interest, as a detailed understanding of adsorption and desorption is required for DNA microarray optimization, biosensor development, and nanoparticle functionalization. One of the most commonly studied surfaces is gold due to its unique optical and electric properties. Through various surface science tools, it was found that thiolated DNA can interact with gold not only via the thiol group but also through the DNA bases. Most of the previous work has been performed with planar gold surfaces. However, knowledge gained from planar gold may not be directly applicable to gold nanoparticles (AuNPs) for several reasons. First, DNA adsorption affinity is a function of AuNP size. Second, DNA may interact with AuNPs differently due to the high curvature. Finally, the colloidal stability of AuNPs confines salt concentration, whereas there is no such limit for planar gold. In addition to gold, graphene oxide (GO) has emerged as a new material for interfacing with DNA. GO and AuNPs share many similar properties for DNA adsorption; both have negatively charged surfaces but can still strongly adsorb DNA, and both are excellent fluorescence quenchers. Similar analytical and biomedical applications have been demonstrated with these two surfaces. The nature of the attractive force however, is different for each of these. DNA adsorption on AuNPs occurs via specific chemical interactions but adsorption on GO occurs via aromatic stacking and hydrophobic interactions. Herein, we summarize the recent developments in studying non-thiolated DNA adsorption and desorption as a function of salt, pH, temperature and DNA secondary structures. Potential future directions and applications are also discussed.  相似文献   

16.
An aqueous solution of Nile Red (NR)-absorbed 32-nm gold nanoparticles (AuNPs) have been used to sense glutathione (GSH). When the NR product is displaced by GSH on the AuNP surface, the fluorescence of the solution increases and the AuNPs aggregate. To determine the concentration and distribution of GSH within erythrocyte cells, a homemade fluorescence and scattering microscope was constructed. This system allows monitoring, within individual cells, of the uptake and transportation of the NRAuNPs and the displacement of the NR product from the NRAuNP surface by GSH. The fluorescence and scattering images clearly indicate the location of GSH inside the cells; these findings are supported by images recorded using 2,3-naphthalenedicarboxaldehyde, which is a highly selective fluorogenic reagent for GSH. Microscopic fluorescence measurements of the NRAuNPs revealed that the GSH concentration inside erythrocyte cells is 1.30 +/- 0.31 mM. To confirm this result, lysed erythrocyte cells were analyzed by applying capillary electrophoresis in conjunction with laser-induced fluorescence using NRAuNPs; accordingly, the average GSH concentration in a single erythrocyte cell was determined to be 1.32 +/- 0.06 mM.  相似文献   

17.
We obtained vertical distribution of diffusion coefficients of single gold nanoparticles (AuNPs) in the extracellular solution space of living cells with optical sectioning darkfield microscopy. It was identified that before reaching the plasma membrane surface during their cellular uptake process, AuNPs must diffuse through a viscous pericellular “buffer zone” several microns thick where their motion is retarded significantly. The pericellular layer exists in two different cell types and is unrelated to the surface chemistry of AuNPs. Further studies on its properties and manipulation may help the development of nanoparticle probes and carriers.  相似文献   

18.
The tubular nanocomposite with well-dispersed distribution of small gold nanoparticles (AuNPs) assembled on the inside and outside surfaces of silica nanotubes (SNTs) was fabricated by combining the single capillary electrospinning technique and an in situ reduction approach. The AuNPs/SNTs nanocomposite exhibited a good catalytic activity for reduction of 4-nitrophenol (4-NP).  相似文献   

19.
A simple approach to form arrays of covalently bonded single gold nanoparticles (AuNPs) is demonstrated. Asymmetric molecular assemblies composed of two layers of rigid aromatic molecules with different structures, arranged in hexagonal arrays on a template produced by edge-spreading lithography, are used to guide the assembly of AuNPs. Arrays of single AuNPs are achieved by taking advantage of the interplay of electrostatic interactions and covalent bonding in conjunction with the positional constraint on the template. Schiff base chemistry is highlighted in the surface chemical reaction to selectively modify nanoscale surface features with high yield.  相似文献   

20.
The purpose of this study was to develop a colorimetric assay for detecting hydrogen peroxide (H2O2) through a combination of using an aryl boronate (AB) derivative and gold nanoparticles (AuNPs). The unique optical property of AuNPs is applied to design a detection probe. The aggregation of AuNPs could be directly observed as a color change by the naked eye. A mannoside-boronate-sulfide ( MBS ) ligand was designed that contains an arylboronate (AB), a mannoside, and a thiol group. The thiol group bonds covalently with the surface of AuNPs to obtain MBS@AuNPs. The mannoside moiety recognizes concanavalin A (Con A), a lectin with four carbohydrate recognition sites that can specifically recognize the non-reducing end of an α-D-mannoside or α-D-glucoside structure. The AB structure on MBS first reacts with H2O2 and then inserts an oxygen atom in the B−H bond, which triggers intramolecular electron rearrangement to cleave the covalent bond, resulting in a MBSt mixture. The MBS or MBSt is then modified to citrate-coated AuNPs (c-AuNPs) to have MBS@AuNPs or MBSt@AuNPs. When the MBS@AuNPs are incubated with Con A, the Con A recognizes multiple mannosides on the surface of the MBS@AuNPs. Subsequently, the MBS@AuNPs aggregate and the solution's color changes from red to purple, but this color change does not occur in the case of MBSt@AuNPs. The phenomenon can be observed by the naked eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号