首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gold nanoparticles linked to linear carboxylated dextran chains were attached to 3-aminopropyltriethoxysilane-functionalized glass surfaces. This method provides novel hybrid nanostructures on a surface with the unique optical properties of gold nanoparticles. The particles attached to the surface retain the capability to aggregate and disaggregate in response to their environment. This procedure presents an alternative method to the immobilization of gold nanoparticles onto planar substrates. Compared to gold nanoparticle monolayers, larger particle surface densities were obtained. Exposure to hydrophobic environments changes the conformation of the hydrophilic dextran chains, causing the gold nanoparticles to aggregate and inducing changes in the absorption spectrum such as red-shifting and broadening of the plasmon absorption peaks. These changes, characteristic of particle aggregation, are reversible. When the substrates are dried and then immersed in an aqueous environment, these changes can be visually observed in a reversible fashion and the sample changes color from the red color of colloidal gold to a bluish-purple color of aggregated nanoparticles. Surface-bound nanoparticles that retain their mobility when attached to a surface by means of a flexible polymer chain could expand the use of aggregation-based assays to solid substrates.  相似文献   

2.
Gold nanoparticles having peptide chains on the surfaces have been prepared yb ring-opening polymerization of gamma-methyl L-glutamate N-carboxyanhydride with fixed amino groups on the nanoparticle surface as an initiator. The number of peptide chains on the surface was adjusted to ca. 2 molecules per gold nanoparticle by controlling the number of fixed amino groups on the surface. The peptide chains on the surface were partially saponified to obtain poly(gamma-methyl L-glutamate-co-L-glutamic acid) with 28 mol% of glutamic acid residues. The number-average molecular weight of the peptide was 73,000. We described structural control of the peptide-coated gold nanoparticle assembly by conformational transition of the surface peptides. In deionized water, the peptide chains on the nanoparticle took a random coil conformation, and the individual nanoparticles existed in dispersed globular species. On the other hand, the peptide chains on the nanoparticle took an alpha-helical conformation in trifluoroethanol. Under this condition, the alpha-helical peptide chains on distinct gold nanoparticles connected the nanoparticles to form a fibril assembly owing to the dipole-dipole interaction between the surface peptide chains. The morphology of the peptide-coated gold nanoparticle assembly could be controlled by the conformational transition of surface peptides, which was attended by solution composition changes.  相似文献   

3.
Plasmonic nanoparticles such as those of gold or silver have been recently investigated as a possible way to improve light absorption in thin film solar cells. Here, a simple method for the preparation of spherical plasmonic gold nanoparticles in the form of a colloidal solution is presented. The nanoparticle diameter is controlled in the range from several nm to tens of nm depending on the synthesis parameters with the size dispersion down to 14 %. The synthesis is based on thermal decomposition and reduction of the chloroauric acid in the presence of a stabilizing capping agent (surfactant) that is very slowly injected into the hot solvent. The surfactant prevents uncontrolled nanoparticle aggregation during the growth process. The nanoparticle size and shape depend on the type of the stabilizing agent. Surfactants with different lengths of the hydrocarbon chains such as Z-octa-9-decenylamine (oleylamine) with AgNO3 and polyvinylpyrrolidone with AgNO3 were used for the steric stabilization. Hydrodynamic diameter of the gold nanoparticles in the colloidal solution was determined by dynamic light scattering while the size of the nanoparticle metallic core was found by small-angle X-ray scattering. The UV-VIS-NIR spectrophotometer measurements revealed a plasmon resonance absorption in the 500–600 nm range. Self-assembled nanoparticle arrays on a silicon substrate were prepared by drop casting followed by spontaneous evaporation of the solvent and by a modified Langmuir-Blodgett deposition. The degree of perfection of the self-assembled arrays was analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering. Homogeneous close-packed hexagonal ordering of the nanoparticles stretching over large areas was evidenced. These results document the viability of the proposed nanoparticle synthesis for the preparation of high-quality plasmonic templates for thin film solar cells with enhanced power conversion efficiency, surface enhanced Raman scattering, and other applications.  相似文献   

4.
Gold nanoparticles having sequential alternating amphiphilic peptide chains, Phe-(Leu-Glu)8, on the surface have been prepared. We describe structural control of the amphiphilic peptide coated gold nanoparticle assembly by a conformational transition of the surface peptides. Under the acidic condition, the conformation of the surface amphiphilic peptide was converted to a beta-sheet structure from an aggregated alpha-helix by incubation. Under this condition, the amphiphilic peptide coated gold nanoparticles formed a nanosheet assembly. The plasmon absorption maximum of the gold nanoparticles shifted to a shorter wavelength with the formation of the beta-sheet assembly of the surface peptide. This suggests that the structure of the peptide coated gold nanoparticle assembly could be controlled by the conformational transition of the surface peptide. Furthermore, the core gold nanoparticle could be fixed in the beta-sheet assembly in the state that stood alone. This system may be useful for novel molecular devices that exhibit quantized properties.  相似文献   

5.
Poly(alkylcyanoacrylate) nanoparticles are developed as carrier for the in vivo delivery of drugs. In this area of research, one of the major challenges is to design nanoparticles able to carry a drug to a specific site in the body. This appears to be mainly governed by the surface properties of the carrier. Results from previous independent studies suggest that the way dextran chains are arranged at the nanoparticle surface can affect the in vivo fate of the carrier. Thus, the purpose of the present study was to investigate for the first time whether electronic paramagnetic resonance (EPR) could highlight a difference between the physico-chemical surface properties of dextran-coated nanoparticles obtained by two different emulsion polymerisation mechanisms of isobutylcyanoacrylate. Poly(isobutylcyanoacrylate) nanoparticles were prepared either by anionic or by radical polymerisation, initiated in both cases by dextran. The respective copolymers self-organised as nanoparticles. Dextran chains located at the nanoparticle surface could be labelled with a free nitroxide radical containing a probe and EPR analysis could be performed on freeze-dried nanoparticles, rehydrated nanoparticles and dispersed nanoparticles in water. The mobility of dextran chains appeared to differ according to the degree of hydration of the systems. More interestingly, EPR spectra clearly highlighted differences in dextran chain mobility comparing the nanoparticles obtained by radical and anionic polymerisation. Therefore, this technique opens an interesting prospect of investigating surface properties of polysaccharide-coated nanoparticles by a new physico-chemical approach to further correlate the mobility of the polysaccharide chains with the fate of the nanoparticles in biological systems.  相似文献   

6.
Our recent work on synthesis and application of thermally gelling nanoparticle dispersions is briefly reviewed here. These nanoparticles consist of interpenetrating polymer networks (IPN) of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM). The aqueous IPN nanoparticle dispersions with polymer concentrations above 2.5 wt % underwent an inverse thermoreversible gelation at about 33 °C. Dextran markers of various molecular weights as model macromolecular pseudodrugs were mixed with the IPN nanoparticle dispersion at room temperature. At body temperature, the dispersion became a gel. The dextran release profiles were then measured using UV-visible spectroscopy. The biocompatibility of this nanoparticle assembly was assessed using an animal implantation model.  相似文献   

7.
The fabrication of highly dense gold nanoparticles (NPs)-coated sulfonated polystyrene (PS) microspheres and their application in surface-enhanced Raman spectroscopy (SERS) were reported. After the preparation of PS microsphere using dispersion polymerization and subsequent sulfonation, [Ag(NH3)2]+ ions were adsorbed on the surfaces of the sulfonated PS microspheres and then reduced to silver nanoseeds for further growth of gold NPs shell by seeded growth approach. Reaction conditions such as the concentration of the growth solution and growth time were adjusted to achieve nonspherical gold NPs-coated PS microspheres with different coverage degree. The application of the as-prepared spiky gold NPs-coated PS microsphere hybrid composite in SERS was finally investigated by using 4-aminothiophenol as probe molecules. The results showed that as-prepared gold NPs-coated PS microspheres could be used as functional hybrid materials to exhibit excellent enhancement ability in SERS.
Figure
High dense gold nanoparticle shell coated sulfonated polystyrene microspheres for SERS application  相似文献   

8.
The water soluble charged silsesquioxane that contains the bridged 1,4-diazoniabicyclo[2.2.2]octane chloride group, was used as stabilizing agent and size controller in the synthesis of gold nanoparticles smaller than 15?nm in aqueous medium. The gold nanoparticle dispersion was converted in solid powder form by evaporation. This powder presented organized structure imposed by the presence of charged organic group, similar to organized structure already observed for pure silsesquioxane. The gold nanoparticles in solid powder form presented high storage stability for several months, at ambient conditions, and can be completely redispersed in water again. After redispersion, the optical properties of gold nanoparticles, observed by ultra-violet and visible spectroscopy, and their morphological characteristics, investigated by transmission electron microscopy, are preserved. The gold nanoparticle aqueous dispersion was used as a vehicle of nanoparticles in the synthesis of sol?Cgel silica based hybrid material. This xerogel was characterized by N2 adsorption?Cdesorption isotherms, showing 260?m2g?1, and it was applied in a satisfactory way as catalyst for p-nitrophenol reduction to p-aminephenol.  相似文献   

9.
Polylactide (PLA)‐grafted dextran was synthesized with a trimethylsilyl protection method to produce novel biodegradable, biomedical materials. PLA‐grafted dextrans with various lengths and numbers of graft chains were synthesized. The properties of solution‐cast films prepared from PLA‐grafted dextrans were investigated with thermal and dynamic mechanical analyses. The graft‐copolymer films exhibited lower glass‐transition temperatures, melting temperatures (Tm's), and crystallinities as well as higher viscosity properties as compared with poly‐L ‐lactide film. The Tm and crystallinity and mechanical properties at 37 °C could be adjusted by controlling the molecular structure such as the lengths and numbers of graft chains. Furthermore, the biodegradability of PLA‐grafted dextran films was investigated through the weight change of film and the molecular weight change of polymer during the in vitro degradation test. PLA‐grafted dextrans exhibited different degradation behavior from poly‐L ‐lactide with the introduction of a polysaccharide segment and branched structure as well as the change of end‐functional group. The degradation rate of PLA‐grafted dextran and the cast film prepared from PLA‐grafted dextran could be adjusted by controlling the sugar content or the length of graft chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2462–2468, 2003  相似文献   

10.
Gold nanoparticles were prepared by ethylene glycol (EG) reducing gold chloride under microwave irradiation. The EG-stabilized gold colloids varied from red to blue with increasing amounts of EG, due to particle aggregation. Addition of the macrocyclic polyamine 2,8,14,20-tetranonyl-4,6,10,12,16,18,22,24-octa(1-aminoethylcarbamoyl)methoxyresorcinarene (TNMR) reversed nanoparticle aggregation under microwave irradiation and greatly improved their dispersion stability in aqueous solutions. These effects are likely due to the amphiphilic nature of TNMR, which has a large hydrophilic headgroup with eight amino groups and four hydrophobic chains. Moreover, the large and flexible hydrophilic groups containing more N and O atoms in the TNMR molecule has a strong stretching and penetrating ability in the aqueous solution, and TNMR molecules can easily form a bilayer protecting structure on the surface of gold nanoparticles, which plays a critical role in the color-change process of the EG-stabilized gold colloid.  相似文献   

11.
Template-free parallel one-dimensional assembly of gold nanoparticles   总被引:1,自引:0,他引:1  
In this work, we have identified key process parameters to generate parallel unidirectional 1D assemblies of gold nanoparticles with the assistance of organic surfactants. By controlling the surfactant population, metal particle size, and amount of solvent for dispersion, the length of nanoparticle chains and their interchain space can be further tailored. In principle, the general findings of this work can also be extended to large-scale 1D organization of other transition/noble metal nanoparticles using simple organic surfactants.  相似文献   

12.
The influence of pH value on gold nanoparticle production in the presence of Pluronic stabilizers is systematically investigated. The reactions are studied as a function of pH and at fixed concentrations of the two reactants, HAuCl(4) and P123 block copolymer. Results indicate that the reaction pathway during the nanoparticle formation can be controlled by varying pH. The nanoparticles synthesized at pH=11.12 have an average diameter of 9.6 nm with a narrow size distribution, and the Pluronics are adsorbed on individual gold particle surfaces to form core-shell structures via hydrophobic interactions. The present work provides an economic way to improve the dispersion and stabilization of gold nanoparticles and throws further light on the understanding of gold nanoparticle production using block copolymers.  相似文献   

13.
Designed peptide conjugates molecules are used to direct the synthesis and assembly of gold nanoparticles into complex 1D nanoparticle superstructures with various morphologies. Four peptide conjugates, each based on the gold‐binding peptide (AYSSGAPPMPPF; PEPAu), are prepared: C12H23O‐AYSSGAPPMPP ( 1 ), C12H23O‐AYSSGAPPMPPF ( 2 ), C12H23O‐AYSSGAPPMPPFF ( 3 ), and C12H23O‐AYSSGAPPMPPFFF ( 4 ). The affect that C‐terminal hydrophobic F residues have on both the soft‐assembly of the peptide conjugates and the resulting assembly of gold nanoparticle superstructures is examined. It is shown that the addition of two C‐terminal F residues ( 3 ) leads to thick, branched 1D gold nanoparticle superstructures, whereas the addition of three C‐terminal F residues ( 4 ) leads to bundling of thin 1D nanoparticle superstructures.  相似文献   

14.
Longitudinal and transverse relaxation times of multicomponent nanoparticle (NP) chains are investigated for their potential use as multifunctional imaging agents in magnetic resonance imaging (MRI). Gold NPs (ca. 5 nm) are arranged linearly along double‐stranded DNA, creating gold NP chains. After cutting gold NP chains with restriction enzymes (EcoRI or BamHI), multicomponent NP chains are formed through a ligation reaction with enzyme‐cut, superparamagnetic NP chains. We evaluate the changes in relaxation times for different constructs of gold–iron oxide NP chains and gold–cobalt iron oxide NP chains using 300 MHz 1H NMR. In addition, the mechanism of proton relaxation for multicomponent NP chains is examined. The results indicate that relaxation times are dependent on the one‐dimensional structure and the amount of superparamagnetic NP chains present in the multicomponent constructs. Multicomponent NP chains arranged on double‐stranded DNA provide a feasible method for fabrication of multifunctional imaging agents that improve relaxation times effectively for MRI applications.  相似文献   

15.
Gold nanoparticle is an important nanomaterial and has been investigated widely owing to its special physical and chemical property[1―5]. In recent years it has been found that the multiple-component nano- structure assembly containing metal, semiconduct…  相似文献   

16.
在微流控芯片中将Taylor弥散分析(TDA)与激光诱导荧光检测(LIF)结合,测定了荧光素钠标记狗血清蛋白(FITC-DSA)的水合半径为(6.12±1.21)nm,扩散系数为(4.11±0.78)×10-11m2/s;然后,初步研究了FITC-DSA与不同粒径金纳米粒子(AuNPs)的相互作用.研究结果表明,不同粒径的AuNPs与蛋白质的作用不同;50 nm的AuNPs与FITC-DSA作用会导致其荧光信号增强.本研究为高通量测定纳米粒子与蛋白质相互作用提供了一种新方法.本方法具有简单快速、耗样量极少等优点,有助于深入了解纳米材料的毒性,推动安全纳米药物的发展.  相似文献   

17.
We report on bottom-up assembly routes for fabricating plasmonic structures and metamaterials composed of colloidal gold and silver nanostructures, such as nanoparticles ("metatoms") and shape-controlled nanocrystals. Owing to their well-controlled sizes/shapes, facile surface functionalization, and excellent plasmonic properties in the visible and near-infrared regions, these nanoparticles and nanocrystals are excellent building blocks of plasmonic structures and metamaterials for optical applications. Recently, we have utilized two kinds of bottom-up techniques (i.e., multiple-probe-based nanomanipulation and layer-by-layer self-assembly) to fabricate strongly coupled plasmonic dimers, one-dimensional (1D) chains, and large-scale two-dimensional/three-dimensional (2D/3D) nanoparticle supercrystals. These coupled nanoparticle/nanocrystal assemblies exhibit unique and tunable plasmonic properties, depending on the material composition, size/shape, intergap distance, the number of composing nanoparticles/nanocrystals (1D chains), and the nanoparticle layer number in the case of 3D nanoparticle supercrystals. By studying these coupled nanoparticle/nanocrystal assemblies, the fundamental plasmonic metamaterial effects could be investigated in detail under well-prepared and previously unexplored experimental settings.  相似文献   

18.
Molecular dynamics simulations were carried out to investigate the structure of a gold‐nanoparticle including 169 Au atoms coated by 42 thiol terminated hydroquinonyl oligoether chains. Three nanoparticle systems were constructed and investigated for structural comparison. The simulation showed that in all three nanosystems thiol‐chains self‐assembled on the surface of the gold cluster to form a stable gold nanoparticle. The configurations of the thiol chains and stacking of the phenylene rings were analyzed. The thiol‐chains are bundled into groups. Each group contains no more than four chains, in which phenylene rings in the thiol‐chains are correlated in parallel and perpendicular forms. Simple quantum mechanical calculations are carried out to elucidate the correlation of the phenylene rings.

A snapshot of a TTOE‐Au nanoparticle.  相似文献   


19.
A novel approach for effectively dispersing SiO2 nanoparticles in a sulfonated poly(arylene ether sulfone) ionomer (SPAES) matrix has been demonstrated. It is based on the application of wet-type milling process. Compared to a conventional mixing process such as sonication, wet-type milling allowed noticeable improvements in SiO2 nanoparticle dispersion, owing to the intensive impact of collisions between milling beads and nanoparticles. In terms of nanoparticle dispersion, the influence of wet-type milling on the direct methanol fuel cells (DMFC) membrane performance such as proton conductivity, methanol permeability, and selectivity was examined and compared with sonication process. This study underlines that nanoparticle dispersion in the composite membranes is crucial in determining DMFC membrane performance and can be substantially improved by employing a novel mixing process, i.e. wet-type milling.  相似文献   

20.
Structure and photoelectrochemical properties of nanostructured SnO2 electrodes deposited electrophoretically with the composite clusters of porphyrin-modified gold nanoparticle with a long, flexible spacer and C60 molecules have been examined to obtain basic information on the development of organic solar cells with a high performance. The photoelectrochemical system with the long, flexible spacer between the porphyrin and the gold nanoparticle in the porphyrin-modified gold nanoparticle exhibited comparable external quantum yield in the UV-vis regions relative to porphyrin-modified gold nanoparticle with a relatively short spacer—C60 composite reference system. These results demonstrate that a suitable spacer to incorporate C60 molecules efficiently between the porphyrins in porphyrin-modified gold nanoparticles is a prerequisite for improving the performance of porphyrin and fullerene-based organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号