首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
A comparative study of preparative isolation and purification of the phenolic compounds magnolol and honokiol from the Chinese medicinal plant Magnoliae officinalis by upright counter-current chromatography (CCC) and semi-preparative HPLC is presented. The comparison reveals that with a two-phase solvent system composed of light petroleum (bp 60-90 degrees C)-ethyl acetate-tetrachloromethane-methanol-water (1:1:8:6:1, v/v), 1250 mg of honokiol and 520 mg of magnolol, with a purity of 98.7 and 99.5%, respectively, were obtained from 2.0 g of a crude sample of Magnoliae officinalis in a single CCC separation. In contrast, semi-preparative HPLC allowed isolation and purification of these two phenolic compounds with significantly lower productivity and higher solvent consumption. Structures of the purified compounds were identified by 1H and 13C NMR.  相似文献   

2.
高效液相色谱法同时测定血清和尿中厚朴酚与和厚朴酚   总被引:4,自引:0,他引:4  
袁成  杜昆  朱丽青  王景祥 《色谱》2000,18(3):229-231
 建立了大鼠服用厚朴提取物后的血清中及尿中厚朴酚与和厚朴酚的高效液相色谱测定法。色谱柱填料为SpherisorbC18,流动相为甲醇-水-冰醋酸(体积比为70∶30∶1),UV检测波长为294nm,灵敏度0.005AUFS。样品用甲醇沉淀蛋白,上清液酸化后用乙酸乙酯-乙醚萃取,然后测定其中的药物浓度。血清和尿中的药物浓度与峰面积的线性关系良好,线性范围分别为0.05~2mg/L(厚朴酚)、0.025~1mg/L(和厚朴酚);精密度和重现性良好。血清中厚朴酚与和厚朴酚的平均加样回收率分别为95.6%(RSD=3.85%)和93.8%(RSD=3.95%),尿中分别为96.0%(RSD=3.83%)和94.9%(RSD=3.54%)。  相似文献   

3.
A simple and sensitive method has been developed for determining honokiol and magnolol in fresh Magnolia obovata (M. obovata) by micro high-performance liquid chromatography with electrochemical detection (microHPLC-ECD). Chromatography was performed using a Capcell Pak C-18 UG 120 microbore octadecylsilica (ODS) column, methanol-water-phosphoric acid (65 : 35 : 0.5, v/v/v), as a mobile phase and applied potential at +0.8 V vs. Ag/AgCl. Peak heights were found linearly related to the amounts of honokiol and magnolol injected from 0.67 pg to 2.0 ng (r>0.999). The detection limits (S/N=3) were 0.13 pg, respectively. Honokiol and magnolol of 0.27 ng were detected with relative standard deviation (RSD) of 0.73 and 1.17% (n=5), respectively. Honokiol and magnolol in Magnolia Bark of the Japanese Pharmacopoeia were extracted with 70% methanol, diluted with a mobile phase, and injected into the microHPLC-ECD for determination. Recoveries of honokiol and magnolol in Magnolia Bark exceeded 98.7% with RSD, less than 0.93% (n=5). Determination of the distributions of honokiol and magnolol in bark, phloem, wood, leaf blades, and petioles of fresh M. obovata were made using weight samples of 40-238 mg. This method is useful to determine honokiol and magnolol in M. obovata, which is a candidate for crude magnolia bark for traditional Japanese herbal medicines.  相似文献   

4.
A validated analytical method is described for the determination of honokiol and magnolol in Hou Po (Magnolia officinalis) as the dried raw herb and the commercially prepared dried aqueous extract. The samples were extracted with methanol by the Soxhlet method, and the extract was analyzed by liquid chromatography with photodiode array (LC/PDA) detection with confirmation of analyte identity by negative-ion electrospray ionization tandem mass spectrometry (ESI-MS/MS). A C18 column was used with a menthanol--0.1% aqueous acetic acid gradient mobile phase. Honokiol and magnolol were quantified at 288 nm. With the MS detector, the honokiol precursor ion at m/z 265 was shown to produce ions at m/z 222 and 224. For magnolol, the precursor ion at m/z 265 produced the ions at m/z 247 and 245. Comparable results were obtained for the LC/PDA and LC/ESI-MS/MS methods of quantitation. Six commercially prepared dried aqueous extracts were analyzed. The levels of honokiol and magnolol found in the raw herb were 17.0 and 21.3 mg/g, respectively. The limits of detection for honokiol and magnolol in the raw herb were 0.45 and 0.58 mg/g, respectively, and in the dried aqueous extract, 0.04 and 0.30 mg/g, respectively.  相似文献   

5.
An optimized high-performance liquid chromatographic method coupled with tandem mass spectrometric detection (LC-MS/MS) was developed for the simultaneous determination of honokiol and magnolol in Magnolia officinalis. Honokiol and magnolol were separated from the extracts using a reversed-phase C(18) column with a mobile phase consisted of acetonitrile and water (75:25, v/v) at a flow-rate of 0.8 mL/min. Selected reaction monitoring (SRM) mode was used for all sample quantification by the precursor-ion/product ion pair m/z 265 --> m/z 224 for honokiol and m/z 265 --> m/z 247 for magnolol. Validation data showed that this method has good linearity (r(2) > 0.995) over the concentration range of 0.0025-0.5 microg/mL for honokiol and magnolol, and both intra- and inter-day variability were acceptable within 15% at the lowest concentrations for this method. This proposed method provides excellent specificity, higher sensitivity and shorter run time than conventional methods and was applied successfully to determine the contents of honokiol and magnolol in M. officinalis.  相似文献   

6.
In this paper, a rapid separation approach has been developed using high-capacity high-speed counter-current chromatography (high-capacity HSCCC) to isolate and purify honokiol and magnolol, which are the main bioactive constituents from Houpu. The optimization of the solvent selection process, sample loading volume and flow rate is systematically studied using analytical high-capacity HSCCC. The optimized parameters obtained rapidly at analytical scale were used for a 1000 x scale-up preparative run using pilot scale high-capacity HSCCC in a MAXI-DE centrifuge. A crude sample of 43 g was successfully separated and the fractions were analysed by high-performance liquid chromatography (HPLC). This large scale preparative single step run yielded 16.9 and 19.4 g of honokiol and magnolol with purities of 98.6 and 99.9%, in only 20 min. This is the first time that high-performance counter-current chromatography has been used to purify multiple gram grade bioactive compounds in less than 1h and at such high concentrations of final products (10.8 g/l for magnolol and 7.0 g/l for honokiol).  相似文献   

7.
Luo Y  Xu Y  Chen L  Luo H  Peng C  Fu J  Chen H  Peng A  Ye H  Xie D  Fu A  Shi J  Yang S  Wei Y 《Journal of chromatography. A》2008,1178(1-2):160-165
In our program to synthesize a series of novel derivatives as potential analogs of honokiol for anti-tumor treatment, we have found that at least three of the derivatives of honokiol showed more potency to inhibit the proliferation of K562 leukemia cells and SPC-A1 adenocarcinoma cells. As a critical step to our further series synthesis of derivatives of honokiol, three derivatives of honokiol composed of two isomers and one compound with two formyl groups, which were hardly separated by common purification methods, needed to be rapidly separated and purified. The present work describes analytical and preparative high-speed counter-current chromatography (HSCCC) for the isolation and purification of these three C-formylation derivatives of honokiol, named 3'-formylhonokiol, 5-formylhonokiol and 3',5-diformylhonokiol, respectively. The solvent system for HSCCC separation was composed of hexane-ethyl acetate-methanol-water with the ratio of 1:0.4:1:0.4 (v/v). The one-step purification produced 157.8 mg, 121.6 mg and 21.2 mg of 3'-formylhonokiol, 5-formylhonokiol, 3',5-diformylhonokiol from crude sample of 400mg with purities of 98.6%, 99.2% and 99.6%, respectively, in an elution time of 2.5 h. The purities and structural identification were determined by HPLC, (1)H NMR, (13)C NMR and mass spectroscopy. Their anti-proliferation effects on K562, A549 and SPC-A1 cell lines were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay.  相似文献   

8.
Capillary zone electrophoresis (CZE) method was used for analysis of magnolol and honokiol. Under the optimized condition, CZE with UV absorption detection provided that the limit of detection was at microM level. To enhance detection sensitivity of magnolol and honokiol, CZE separation system was coupled with a laser-induced fluorescence (LIF) detector for the first time. The limits of detection of magnolol and honokiol were 12 nM (3.20 ng ml(-1)) and 18 nM (4.79 ng ml(-1)), respectively, showing that the CZE-LIF system provides greater than 100-fold sensitivity improvements than does the CZE-UV system. The developed method was applied to analyze magnolol and honokiol in spiked human plasma samples, microsome incubation samples as a preliminary demonstration of its potential in pharmacokinetic studies.  相似文献   

9.
Wu X  Chen X  Hu Z 《Talanta》2003,59(1):115-121
A high-performance liquid chromatographic (HPLC) method is described for the simultaneous determination of honokiol and magnolol in rat plasma. The plasma was deproteinized with acetonitrile which contained an internal standard (diphenyl) and was separated from the aqueous layer by adding sodium chloride. Honokiol and magnolol are extracted into the acetonitrile layer with high yield, and determined by reversed-phase HPLC and ultraviolet detection. The limits of quantitation for honokiol and magnolol were 13 and 25 ng ml−1 in plasma, respectively, and recovery of both analytes was greater than 93%. The assay was linear from 20 to 200 ng ml−1 for honokiol and from 40 to 400 ng ml−1 for magnolol. Variation over the range of the standard curve was less than 15%. The method was used to determine the concentration-time profiles of honokiol and magnolol in the plasma following rectal administration of Houpo extract at a dose of 245 mg kg−1, equivalent to 13.5, 24.4 mg kg−1 of honokiol and magnolol, respectively.  相似文献   

10.
利用三维荧光光谱与化学计量学二阶校正算法相结合, 直接测定人体血浆中和厚朴药材中的厚朴酚及和厚朴酚. 采用平行因子分析(PARAFAC)算法解析所得两种物质的回收率分别为(99.5±2.6)%和(90.2±1.8)%. 采用交替三线性分解(ATLD)算法解析, 当组分数N取3时, 回收率分别为(104.2±3.2)%和(98.7±4.0)%; 当N取4时, 回收率分别为(102.7±2.9)%和(99.0±4.6)%. 同时用该方法对厚朴药材中的厚朴酚及和厚朴酚进行快速定量测定, 结果令人满意. 实验结果表明, 此法可用于复杂试样中未知干扰共存下厚朴酚及和厚朴酚的同时测定.  相似文献   

11.
Introduction Capillaryelectrophoresis(CE),ahighefficiency separationtechnique,hasrapidlydevelopedsince1981[1].Notonlyhavedifferentmodesbeenrepor ted[1—3],butalsosomenon aqueouselectrophoresis media[4]havebeenapplied.Theimportantproperties ofnonaqueousmed…  相似文献   

12.
A reversed phase high performance liquid chromatography method for simultaneous determined magnolol and honokiol in serum and urine of rat were builted.  相似文献   

13.
Preparative high-speed counter-current chromatography (HSCCC) was successfully used for isolation and purification of osthol and xanthotoxol from Cnidium monnieri (L.) Cusson (Common Cnidium Fruit) using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v), and (5:5:6:4, v/v), which had been selected by analytical high-speed counter-current chromatography. Using a preparative unit of the HSCCC centrifuge, about a 308 mg amount of the crude extract was separated, yielding 88.3 mg of osthol and 19.4 mg of xanthotoxol at a high purity of over 98%.  相似文献   

14.
高效液相色谱法同时测定厚朴温中胶囊中的7种有效成分   总被引:1,自引:0,他引:1  
丁晓菊  赵云丽  高晓霞  唐倩  李琳  于治国 《色谱》2009,27(1):107-110
建立了同时测定厚朴温中胶囊中山姜素、甘草酸、和厚朴酚、小豆蔻明、木香烃内酯、去氢木香内酯及厚朴酚含量的反相高效液相色谱法。固定相为Scienhome C18柱(250 mm×4.6 mm,5 μm),流动相为甲醇-乙腈-0.06%磷酸溶液(体积比为38∶27∶35),流速为1.0 mL/min,柱温为30 ℃,检测波长为235 nm。在上述条件下,山姜素、甘草酸、和厚朴酚、小豆蔻明、木香烃内酯、去氢木香内酯及厚朴酚的质量浓度分别在0.885~17.7,107~2140,8.85~17.7,1.035~20.7,4.85~97,5.9~118和17.5~350 mg/L时与色谱峰面积之间的线性关系良好;回收率分别为96.9%~101.1%,96.0%~100.5%,100.3%~100.8%,97.7%~101.4%,100.4%~102.3%,96.0%~102.3%和96.2%~100.6%。该方法简便、快速、准确,可用于厚朴温中胶囊的质量控制。  相似文献   

15.
二阶导数同步荧光光谱法同时直接测定厚朴酚及和厚朴酚   总被引:2,自引:0,他引:2  
研究了厚朴酚与和厚朴酚及其混合溶液的二阶导数同步荧光光谱,结果两者的二阶导数同步荧光光谱得到完全分离,消除了彼此间的干扰,据此建立了一种二阶导数同步荧光光谱法同时直接测定混合物中厚朴酚与和厚朴酚的新方法.厚朴酚与和厚朴酚的线性范围分别为2.8~500.0 μg/L和4.3~560.0 μg/L;检出限分别为0.84和1.30 μg/L,回收率分别为94.65%~105.58%和95.09%~104.51%; 相对标准偏差均低于4.08%.本方法用于同时直接测定厚朴药材及其提取物中厚朴酚与和厚朴酚含量,结果令人满意.  相似文献   

16.
Herein, we sought to evaluate the contribution of the 1,3,5-triazine ring through the metformin cyclization unit to the biological activity of magnolol and honokiol-conjugates. One of the phenolic OH groups of magnolol or honokiol was replaced by a 1,3,5-triazine ring to further explore their synthesis and medicinal versatility. In this study, a robust procedure of three steps was adopted for the synthesis of magnolol and honokiol derivatives by alkylation of potassium carbonate with a 1,3,5-triazine ring. To our knowledge, this is the first report to connect one of the phenolic OH positions of magnolol or honokiol to a 1,3,5-triazine ring cyclized by metformin. The structural characterization of three new compounds was carried out via spectroscopic techniques, i.e., 13C NMR, 1H NMR, and HRMS. Surprisingly, these compounds showed no cytotoxicity against RAW 264.7 macrophages but significantly inhibited the proliferation of MCF-7 (human breast cancer cells), HepG2 (human hepatoma cells), A549 (human lung carcinoma cells), and BxPC-3 (human pancreatic carcinoma cells) tumor cell lines. Furthermore, the compounds also significantly inhibited the release of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the lipopolysaccharide (LPS)-activated mouse cells (RAW 264.7). Among them, compound 2 demonstrated promising broad-spectrum antiproliferative potential with half inhibitory concentration (IC50) values ranging from 5.57 to 8.74 µM and it significantly decreased caspase-3 and Bcl-2 expression in HepG2 cells. These interesting findings show that derivatization of magnolol and honokiol with 1,3,5-triazine affects and modulates their biological properties.  相似文献   

17.
10‐Deacetylbaccatin III, an important semisynthetic precursor of paclitaxel and docetaxel, can be extracted from Taxus wallichiana Zucc. A process for the isolation and purification of 10‐deacetylbaccatin III ( 1 ), baccatin III ( 2 ), and 7β‐xylosyl‐10‐deacetyltaxol ( 3 ) from the leaves and branches of Taxus wallichiana Zucc. via macroporous resin column chromatography combined with high‐speed countercurrent chromatography or reversed‐phase flash chromatography was developed in this study. After fractionation by macroporous resin column chromatography, 80% methanol fraction was selected based on high‐performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis. A solvent system composed of n‐hexane, ethyl acetate, methanol, and water (1.6:2.5:1.6:2.5, v/v/v/v) was used for the high‐speed countercurrent chromatography separation at a flow rate of 2.5 mL/min. The reversed‐phase flash chromatography separation was performed using methanol/water as the mobile phase at a flow rate of 3 mL/min. The high‐speed countercurrent chromatography separation produced compounds 1 (10.2 mg, 94.4%), 2 (2.1 mg, 98.0%), and 3 (4.6 mg, 98.8%) from 100 mg of sample within 110 min, while the reversed‐phase flash chromatography separation purified compounds 1 (9.8 mg, 95.6%) and 3 (4.9 mg, 97.9%) from 100 mg of sample within 120 min.  相似文献   

18.
High-speed counter-current chromatography (HSCCC) was applied to the isolation and purification of geniposide from Gardenia jasminoides Ellis. Analytical HSCCC was used for the preliminary selection of a suitable solvent system composed of ethyl acetate-n-butanol-water (2:1:3, v/v/v). According to the above solvent system, preparative HSCCC was successfully performed with the optimal solvent system composed of ethyl acetate-n-butanol-water (2:1.5:3, v/v/v) yielding 389 mg of geniposide at over 98% purity from 1g of the partially purified extract with 38.9% recovery in a one-step separation.  相似文献   

19.
The bioactive compound syringin along with edgeworoside C were separated from the n-butanol extract of the stems and barks of Edgeworthia chrysantha Lindl (E. papyrifera) by high-speed counter-current chromatography (HSCCC) while it was difficult to purify each compound by silica gel column chromatography. Syringin was isolated from this plant for the first time. The two-phase solvent system used was composed of ethyl acetate-ethanol-water at an optimized volume ratio of 15:1:15 (v/v/v). Preparative HSCCC yielded, from 110mg of the partially purified extract, 28mg of syringin and 45 mg edgeworoside C each at over 96% purity by high-performance liquid chromatography analysis. Their structures were identified by electron impact ionization MS, 1H NMR and 13C NMR.  相似文献   

20.
The effects of pH on separation parameters such as migration mobility, resolution, sensitivity, column efficiency and peak shape were emphatically studied. Better separation of magnolol and honokiol using capillary zone electrophoresis was achieved by optimizing pH in the range 5.0–11.7. The influences of applied voltage and temperature were also investigated. We adopted a better sample extraction procedure by which higher contents of honokiol and magnolol with sample compositions unchanged were obtained. The analysis was performed with direct UV detection using a 10 mM borate-10 mM phosphate buffer at pH of 11.6. The method was successfully applied to the simultaneous determination of magnolol and honokiol inMagnolia officinalis bark within 9 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号