首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The four-year evolution of standard potential of a silver?Csilver chloride reference electrode (denoted further in the text as an Ag/AgCl electrode) is presented together with some suggestions for the improvement of pH primary measurement procedure.  相似文献   

2.
Nanoscalematerialsaretheimportantpartofnanoscienceandtechnology.Thestudyofnanocrystallinematerials’structureiscloselyconnectedwiththeirapplication.Therefore,thestructurestudyofnanocrystallinematerialsattractsparticularinterestintherapiddevelopmentofhi…  相似文献   

3.
A novel shape-selective fabrication of nanostructured silver   总被引:5,自引:0,他引:5  
A novel protection-reduction technique is developed for the preparation of silver nanoparticles, nanorods and wheatear-like supramolecular nanostructures at room temperature using silver potassium cyanide [KAg(CN)2] as a silver source, vitamin C (Vc) as a reducing agent and polyvinylpyrrolidone (PVP) as a protecting agent. The concentration of KAg(CN)2, the mole ratios of PVP/Vc and KAg(CN)2/Vc have significant effects on the formation and growth of these novel nanostructures. This method may be extended to prepare novel nanostructures of other metals.  相似文献   

4.
5.
Silver–silica nanostructured composites were prepared by spray pyrolysis of aqueous sols of silica nanoparticles containing silver nitrate. The physical and chemical characteristics of the composites prepared at different Ag/Si atomic ratio in the sols and temperatures of pyrolysis were examined by TEM, SEM, XRD, FT-IR and UV-visible spectra. For the low silver ratios up to 0.2, well-dispersed silver particles were produced in the pore of the silica agglomerates with their size and surface plasmon resonance depending on the pore size and silver mobility, in addition to the loading and temperature. The formation of silver silicate and new-phase silica as well as crystallinity of the silver prepared was discussed. There was also explained how the temperature of preparation affected the morphologies of the composites produced with higher Ag/Si ratios greater than 1. Mechanism on the formation of silver–silica composites was proposed for the wide range of the ratios from 0.01 to 3.  相似文献   

6.
Several aspects of the application of silver electrode to the electrochemical studies of hemoglobin have been discussed in this paper . The silver electrode could not only be used directly as the electrode for the electrochemical studies of hemoglobin, but also react with phenothiazine and benzimidazole to give stable and useful mediator-coated electrodes. In addition, the silver electrode could help sodium dodecyl sulfate to give full play to its promoting effect on the protein.  相似文献   

7.
Porous monolithic gels based on silica with pore size from 16 nm to 3–5 μm have been synthesized using sol–gel technology. Parameters of porous structure are determined by the components molar ratio in the reaction mixture. The reduction processes of silver ions by formamide in the synthesized porous gel were studied. It has been shown that at the initial stage of the reaction, silver particles with size up to 10 nm are formed in the absence of any stabilizers. The composites Ag/SiO2 were synthesized by means of the threefold impregnation of porous monoliths using the solution of silver nitrate in the mixture of methanol and formamide. Their catalytic activity in the CO oxidation was studied. It was discovered that after activation in oxygen and hydrogen the samples display a low temperature activity, which depends on the number of Si–O-nonbridging oxygen groups on the surface of silica porous monoliths.  相似文献   

8.
Polyacrylamide–silver nanocomposites are successfully prepared by irradiating the aqueous solution of AgNO3 and acrylamide monomer with 60Co γ-ray. The composites are found to contain nanometer silver particles with a narrow size distribution and a homogeneous dispersion. The existing of isopropanol (as a hydroxyl radical scavenger and chain transfer agent) in system affects the properties of both the dispersed phase and matrix of the nanocomposites. The fast-formed polymer chains probably play a key role in preventing the aggregation of silver particles which are reduced later.  相似文献   

9.
Formation of silver sulfide binary cluster ions,as well as the effects of silver and sulfur content proportion,the cluster size range,the influence of laser fluence,the UV laser photolysis,etc.,was studied with the laser ablation method and a tandem time-of-flight mass spectrometer.The results show that there exist two different forms of positively charge-bearing cluster ions;[(Ag2S)n Ag] + and [ (Ag2S)n-1 Ag3]+.The most possible forms of the sulfur sensitization centers acting as traps of photoelectrons are [Ag2S] +,[ Ag2S Ag] +,[ Ag2S Ag3]+ and the analogs.  相似文献   

10.
The synthesis and molecular recognition properties of a new sulfur containing β-cyclodextrin (β-CD) derivative chemisorbed on a silver surface are described. Hepta-6-amino-6-deoxy-β-CD was allowed to react with CS2 in the presence of ammonia to give a mixture of partially substituted dithiocarbamate derivatives with an average degree of substitution of 4.5. A modified silver electrode with this derivative is capable of discriminating between the three positional isomers of nitrobenzoate ion and nitrophenol, as determined by cyclic voltammetry. Only the meta- and para-isomers give a signal corresponding to the reduction of the nitro group. This is attributed to the different orientations of the nitro group with respect to the silver surface after inclusion in the CD cavity. Experiments in the presence of cyclohexanol showed a decrease in signal intensity of the meta- and para-isomers which is associated with the competitive complexation of this guest, suggesting that the electroactive probe is complexed to the cavity.  相似文献   

11.
Silver nanoparticles (Ag NPs) are fabricated through γ-irradiation reduction of silver ions in aqueous starch solutions. The UV–vis analyses show smaller sizes of Ag NPs produced, with higher yields, as the irradiation doses and/or Ag+ concentrations are increased. Higher concentrations of starch enhance the yields of Ag NPs, with no significant effects on their size. The most economical Ag NPs are produced at 5 kGy γ-irradiation of a 2×10−3 M solution of AgNO3 containing 0.5% starch. They show a relatively narrow size distribution, indicated by TEM and its corresponding size distribution histogram. The XRD pattern confirms the face-centered cubic (fcc) Ag NPs embedded in starch molecules. Interactions between these nanoparticle surfaces and starch oxygen atoms are indicated by FT–IR. Antibacterial activities of Ag NPs against Escherichia coli appear dependent on the γ-ray doses applied.  相似文献   

12.

Abstract  

The activity coefficient of oxygen in liquid Ag and binary Ag–Te dilute alloys were determined between 1,285 and 1,485 K by coulometric titration using the electrochemical cell (Ir, [O] in liquid metal or alloy | yttria stabilized zirconia | air, Pt). The experimental and evaluation procedures described in the literature were adopted. The oxygen activity coefficient was determined in pure liquid silver to be . Next, the oxygen activity coefficient in dilute Ag–(Te)–O alloys for variable X Te content (from 0.01 to 0.06) was measured. From the obtained results, Wagner’s interaction parameter as a function of temperature was derived in the form . The electrochemical coulometric titration method seems to be very useful to study the thermodynamics of oxygen interaction in liquid silver and its alloys.  相似文献   

13.
A kinetic resolution of α-allenic alcohols is realized through chiral silver phosphate-catalyzed cycloisomerization with high stereoselectivity (selectivity factor up to 189) and tolerance of a variety of functional groups. A mechanistic model is proposed to interpret the origin of the high stereoselectivity and broad substrate scope.  相似文献   

14.
Hemoglobin (Hb) and silver–silver oxide (Ag–Ag2O) nanoparticles were co-immobilized on a bare silver electrode surface by cyclic voltammetry, and were characterized by UV–vis reflection spectroscopy, scanning electron microscopy, and electrochemical impedance spectroscopy. The immobilized Hb was shown to maintain its biological activity well. Direct electron transfer between Hb and the resulting electrode was achieved without the aid of any electron mediator. The reduction currents to hydrogen peroxide (H2O2) at co-immobilized electrodes showed a linear relationship with H2O2 concentration over a concentration range from 6.0?×?10?6 to 5.0?×?10?2 mol L?1, and a detection limit of 2.0?×?10?6 mol L?1 (S/N?=?3).  相似文献   

15.
This review highlights some structural features and luminescent properties of homo- and hetero-multinuclear silver(I)–pyridinyl complexes. It focuses on the coordination and geometry of the silver(I) ions to the pyridinyl-nitrogen. For this reason, we have considered only pyridinyl-N–Ag(I) complexes whose crystal data are available. In addition, this review does not consider mononuclear silver(I)–pyridinyl complexes as these have been reviewed elsewhere. This is motivated by the fact that multinuclear silver(I)–pyridinyl complexes have been shown to be more stable in solution, possess enhanced properties, and have fascinating structures compared to their mononuclear counterparts. The introduction highlights pyridinyl ligands used in complexation of silver(I) ions. The main body highlights complexation of silver(I) through pyridinyl nitrogen and the interactions found in the multinuclear silver(I)–pyridinyl complexes as well as the coordination number and geometry of silver(I) centers. Though silver(I) has been flaunted to prefer linear twofold coordination geometry, from this review, it is clear that higher coordination numbers in varied geometries are possible. These include distorted trigonal planar, T-shaped, distorted tetrahedral, trigonal bipyramidal, and octahedral geometries. Coordination of silver(I) to pyridinyl ligands and their metalloligands has been observed to impart or enhance luminescent properties in the ensuing complexes.  相似文献   

16.
The optical properties of silver nanoparticles embedded in poly(methylmethacrylate) (PMMA) was investigated as well as the influence of silver nanoparticles on the thermal properties of polymer matrix. The average size and particle size distribution of silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were optically characterized using UV-Vis and FTIR spectroscopy. Thermal stability of polymer matrix was improved upon incorporation of small amount of silver nanoparticles. Also, silver nanoparticles have pronounced effect on thermo-oxidative stability of PMMA matrix. The glass transition temperatures of nanocomposites are lower compared to the pure polymer.  相似文献   

17.
Silver nanoparticles were synthesised by reducing silver acetate with a long-chain aliphatic amine. β-Cyclodextrin (CD)-stabilised silver nanoparticles were successfully synthesised and characterised by the UV–vis spectroscopy and scanning electron microscopy analysis. This system was examined for their antifungal activity against opportunistic human pathogens such as Aspergillus fumigatus, Mucor ramosissimus and Chrysosporium species. This study clearly demonstrates that the present system is a powerful antifungal agent against human opportunistic pathogenic fungi.  相似文献   

18.
The formation and transformations of blue silver ( max 700 nm) during -irradiation of a weakly alkaline (pH 9) aqueous solution containing AgClO4, polyacrylic acid (PAA), and isopropanol were studied. We believe that blue silver is a linear silver cluster stabilized on a polymeric molecule. During radiation-chemical reduction the cluster is transformed into new clusters ( max = 365 and 460 nm). When all of the Ag+ ions present in the solution have been reduced, clusters coalesce and a new phase,i.e., colloidal silver particles, forms. The mechanism of the radiation-chemical transformations is discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 35–37, January, 1995.  相似文献   

19.
Flat sheet porous polysulfone–silver nanocomposite membranes were synthesized by the wet phase inversion process. The effects of casting mixture composition and nanoparticle incorporation route on the morphological and separation properties of prepared membranes were studied by comparing nanocomposites of different preparations with silver-free controls. Silver nanoparticles were either synthesized ex situ and then added to the casting solution as an organosol or produced in the casting solution via in situ reduction of ionic silver by the polymer solvent. Nanocomposite membranes of three types differing in skin porosity and macrovoid structure were prepared. The structure and properties of nanocomposites were interpreted in terms of the coupling between the processes of nanoparticle formation and gelling of the polymer-rich phase during phase inversion. Larger nanoparticles preferentially located in the skin layer were observed in composites prepared via the ex situ method while in situ reduction of silver led to formation of smaller nanoparticles homogeneously distributed along the membrane cross-section. In some cases, incorporation of nanoscale silver formed ex situ resulted in macrovoid widening and an order of magnitude decrease in hydraulic resistance accompanied by only a moderate decrease in rejection. The accessibility of the silver nanoparticles embedded in the membrane was quantitatively assessed by the degree of the growth inhibition of a membrane biofilm due to the ionic silver released by the nanocomposites and was found to depend on the method of silver incorporation.  相似文献   

20.
Lv  Hua  Li  Shuang  Liu  Yumin  Wang  Gongke  Li  Xiang  Lu  Yan  Wang  Jianji 《Mikrochimica acta》2015,182(15):2513-2520

We describe a reversible fluorescent DNA–based INHIBIT logic gate for the determination of silver(I) and iodide ions using graphene oxide (GO) as a signal transducer and Ag(I) and iodide as mechanical activators. The basic performance, optimized conditions, sensitivity and selectivity of the logic gate were investigated and revealed that the method is highly sensitive and selective over potentially interfering ions. The limits of detection for Ag(I) and iodide are 10 nM and 50 nM, respectively. This logic gate was successfully applied to the determination of Ag(I) and iodide in (spiked) tap water and river water. It was also used for the determination of iodide in human urine samples with satisfactory results. Compared to other methods, this INHIBIT logic gate is simple in design and has small background interference.

A simple and reversible fluorescent DNA-based INHIBIT logic gate is designed by using graphene oxide as a signal transducer and silver ions and iodide as mechanical activators.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号