首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
2.
We report on the synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-coated Ni(OH)2 tubes with mesoscale dimensions. These composite tubes were prepared via a two-step chemical precipitation within an anodic alumina membrane under ambient conditions. The morphology and structure of the as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) equipped with energy dispersive spectroscopy (EDS). The results showed that the size of the tubes was of mesoscale dimension and the proportion of the tube morphology was about 95%. The as-prepared composite tubes were further investigated as the positive-electrode materials of rechargeable alkaline batteries. Electrochemical measurements revealed that the Ni(OH)2 tubes coated with Ca(OH)2, Co(OH)2, and Y(OH)3 exhibited superior electrode properties including high discharge capacity, excellent high-temperature and high-rate discharge ability, and good cycling reversibility. The mechanism analysis suggests that both the coated layers and the unique hollow-tube structures play an indispensable role in optimizing the electrochemical performance of nickel hydroxide electrodes.  相似文献   

3.
4.
5.
Summary The stabilities of rosasite, (Cu, Zn)2 (CO3)(OH)2, and aurichalcite, (Zn, Cu)5(CO3)2(OH)6, have been determined by solution experiments with computer calculations of aqueous species in equilibrium with the solid phases. G f o values for rosasite and aurichalcite have been calculated as –1100 and –2766 kJ mol–1 respectively for specific samples of the two minerals. Most of the difference between the free energies of the compounds and those of malachite, Cu2(CO3)(OH)2, and hydrozincite, Zn5(CO3)2(OH)6 arises from substitution of the minor cation in the crystal lattice. Malachite, zincian malachite and rosasite should be considered as a single isomorphous series.Part II: A. K. Alwan and P. A. Williams,Transition Acct. Chem., 4, 319 (1979).  相似文献   

6.
Redetermination of the Crystal Structures of the Hexahydroxometallates Na2Sn(OH)6, K2Sn(OH)6, and K2Pb(OH)6 Slow cooling down of hot saturated hydroxo stannate‐ resp. ‐plumbate solutions gives crystals of Na2Sn(OH)6, K2Sn(OH)6, and K2Pb(OH)6 well suited for an X‐ray structure determination. With these crystals the so far known crystal data were verified, determined more precisely and H‐positions found for the first time. The compounds crystallize rhombohedral in the space group R 3. The hexagonal unit cells contain three formula units with Na2Sn(OH)6: a = 5.951(1) Å, c = 14.191(2) Å, c/a = 2.384 K2Sn(OH)6: a = 6.541(1) Å, c = 12.813(4) Å, c/a = 1.959 K2Pb(OH)6: a = 6.625(1) Å, c = 12.998(2) Å, c/a = 1.962 The compounds are not isotypic whereas the atoms occupy in all three cases the same Wyckoff positions. Na2Sn(OH)6 has with an hcp packing of O a CdI2 like superstructure with Na and Sn in octahedral interstices. Hydrogen bonds O–H…O–H play a role in solid K2Sn(OH)6 and K2Pb(OH)6. In these compounds the potassium ions are shifted from an octahedral coordination in an hcp packing of O. They have nine nearest O‐neighbours. The hydrogen bonds are investigated by Raman spectroscopy.  相似文献   

7.
8.
9.
《Solid State Sciences》2007,9(7):619-627
Three new crystal structures, isotypic with β-Zr2O(PO4)2, have been resolved by the Rietveld method. All crystallize with an orthorhombic cell (S.G.: Cmca) with a = 7.1393(2) Å, b = 9.2641(2) Å, c = 12.5262(4) Å, V = 828.46(4) Å3 and Z = 8 for Th(OH)PO4; a = 7.0100(2) Å, b = 9.1200(2) Å, c = 12.3665(3) Å, V = 790.60(4) Å3 and Z = 8 for U(OH)PO4; a = 7.1691(3) Å, b = 9.2388(4) Å, c = 12.8204(7) Å, V = 849.15(7) Å3 and Z = 4 for Th2O(PO4)2. By heating, the M(OH)PO4 (M = Th, U) compounds condense topotactically into M2O(PO4)2, with a change of the environment of the tetravalent cation that lowers from 8 to 7 oxygen atoms. The lower stability of Th2O(PO4)2 compared to that of U2O(PO4)2 seems to result from this unusual environment for tetravalent thorium.  相似文献   

10.
The densities of boric acid aqueous solutions and sodium hydroxide-sodium borate mixtures were measured as a function of concentration, between 375 and 523 K at pressures close to saturation. The partial molar volumes of boric acid were obtained and it was found that they are almost independent of the concentration. The partial molar volumes of the sodium hydroxide-sodium borate mixtures were fitted to the Pitzer equation for mixtures using the known parameters for NaOH. Thus, the partial molar volume at infinite dilution and the Pitzer parameters of sodium borate could be obtained by assuming ideal mixing.  相似文献   

11.
The conductivities of aqueous solutions of sodium borate at 25°C and lithium borate at various temperatures are reported. The conductivity of the B(OH) 4 ion is 35.3 ±0.2 S-cm2-mole−1 at 25°C. The electrolytes are both associated, the lithium salt being more associated than the sodium salt. The mobilities and association constants obtained from the conductivity data agree with a model recently proposed for the H2O−B(OH) 4 interactions. A discrepancy in the reported thermodynamic behavior of NaB(OH)4 aqueous solutions has been resolved by means of the association constants obtained in the present study. Thus the usefulness of the conductivity measurements to determine excess chemical potentials of binary electrolytes in dilute solution is again shown.  相似文献   

12.
13.
14.
利用软嵌式粉末电极技术研究了Y(OH)3包覆对球形Ni(OH)2电化学性能的影响. 循环伏安结果表明, 在球形Ni(OH)2的氧化过程中存在Ni(Ⅲ)和Ni(Ⅳ)的两步氧化反应, 产生的Ni(Ⅳ)不稳定, 能分解产生NiOOH和氧气, 所以可将Ni(Ⅲ)→Ni(Ⅳ)看作副反应. Y(OH)3包覆层对Ni(OH)2氧化过程后期的副反应, 特别是Ni(Ⅲ)→Ni(Ⅳ)具有较好的抑制作用. 由包覆后的Ni(OH)2制成的模拟电池表现出很好的高温性能, 在1C充放电条件下, 当Y的摩尔分数为1.61%时, 在60 ℃时所对应的容量保持率可达到25 ℃的92.7%; 当Y的摩尔分数仅为0.55 %时, 在60 ℃时所对应的质量比容量也可达到241.3 mA·h/g.  相似文献   

15.
Reactions of laser-ablated Al, Ga, In, and Tl atoms with H2O2 and with H2 + O2 mixtures diluted in argon give new absorptions in the O-H and M-O stretching and O-H bending regions, which are assigned to the metal mono-, di-, and trihydroxide molecules. Isotopic substitutions (D2O2, 18O2, 16,18O2, HD, and D2) confirm the assignments, and DFT calculations reproduce the experimental results. Infrared spectra for the Al(OH)(OD) molecule verify the calculated C2v structure. The trihydroxide molecules increase on annealing from the spontaneous reaction with a second H2O2 molecule. Aluminum atom reactions with the H2 + O2 mixtures favor the HAl(OH)2 product, suggesting that AlH3 generated by UV irradiation combines with O2 to form HAl(OH)2.  相似文献   

16.
Musić  S.  Gessner  M.  Wolf  R. H. H. 《Mikrochimica acta》1979,71(1-2):95-104
Summary The effect of pH on the sorption of ruthenium-97 on Fe2O3, Fe(OH)3 and Fe(OH)2 precipitates was studied by radiotracer technique. The sorption characteristics of Fe2O3, Fe(OH)3 and Fe(OH)2 sorbents have been established. Iron(II) hydroxide can be used for the preconcentration of ruthenium-97 or generally of trace amounts of ruthenium, without regard to the oxidation state of ruthenium. The effect of duration of the contact between the hydroxide sorbent and ruthenium-97 in solution was also studied.
Zusammenfassung Der Einfluß des pH auf die Adsorption von97Ru an Fe2O3,- Fe(OH)3-und Fe(OH)2-Niederschlägen wurde radiochemisch untersucht. Die Sorptionsmerkmale der erwähnten Adsorptionsmittel wurden festgestellt. Eisen-(II)hydroxid kann für die Anreicherung von97Ru oder allgemein von Rutheniumspuren ohne Rücksicht auf deren Oxydationsstufe verwendet werden. Der Einfluß der Berührungsdauer zwischen adsorbierendem Hydroxid und97Ru in der Lösung wurde gleichfalls untersucht.
  相似文献   

17.
Crystal Structures of Sr(OH)2 · H2O, Ba(OH)2 · H2O (o.-rh. and mon.), and Ba(OH)2 · 3 H2O The crystal structures of Ba(OH)2 · 3 H2O (Pnma, Z = 4), γ-Ba(OH)2 · H2O (P21/m, Z = 2) and the isotypic Sr(OH)2 · H2O and β-Ba(OH)2 · H2O (Pmc21, Z = 2) were determined using X-ray single crystal data. Ba(OH)2 · 3 H2O and Ba(OH)2 · H2O mon. crystallize in hitherto unknown structure types. The structure of Ba(OH)2 · H2O mon. is strongly related to that of rare earth hydroxides M(OH)3 with space group P63/m (super group of P21/m). The metal-oxygen distances are significantly shorter for OH? ions (mean Ba—O bond lengths of all hydroxides under investigation 278.1 pm) than for H2O molecules (289.9 pm). Corresponding to other hydrates of ionic hydroxides, the water molecules form strong hydrogen bonds to adjacent OH? ions whereas the hydroxide are not H-bonded.  相似文献   

18.
We present calculations on the parity‐conserving and the parity‐violating potentials in several MeOH isotopomers for the torsional motion by the newly developed methods of electroweak quantum chemistry from our group. The absolute magnitudes of the parity‐violating potentials for MeOH are small compared to H2O2 and C2H4, but similar to C2H6, which is explained by the high (threefold) symmetry of the torsional top in MeOH and C2H6. ‘Chiral’ and ‘achiral’ isotopic substitutions in MeOH lead to small changes only, but vibrational averaging is discussed to be important in all these cases. Simple isotopic sum rules are derived to explain and predict the relationships between parity‐violating potentials in various conformations and configurations of the several isotopomers investigated. The parity‐violating energy difference ΔpvE=Epv(R)?Epv(S) between the enantiomers of chiral CHDTOH, first synthesized by Arigoni and co‐workers, is for two conformers ca. ?3.66?10?17 and for the third one +7.32?10?17 hc cm?1. Thus, for ΔpvE, the conformation is more important than the configuration (at the equilibrium geometries, without vibrational averaging). Averaging over torsional tunneling may lead to further cancellation and even smaller values.  相似文献   

19.
Hydroxo Compounds. 9. Barium Oxohydroxostannate(II) Ba[SnO(OH)]2 The pale yellow barium hydroxostannate(II), to which different stoichiometries have been assigned in the past, is now identified doubtlessly as Ba[SnO(OH)]2. The compound crystallizes in the monoclinic space group P21 (a = 759.4(2) pm, b = 576.2(1) pm, c = 717.4(2) pm, β = 107.67(2)°, Z = 2, R = 0.038, 645 Ihkl) and exhibits a typical layer structure. Ba[SnO(OH)]2 contains a new structural element in tin(II) chemistry, which is a one dimensional polyanion [SnO(OH)]? with syndiotactical conformation. In the context with the structures of two Na-hydroxostannates(II) which were characterized recently, the polyanion can be looked at as an intermediate condensation product of a (topotactical ?) reaction to SnO which all known hydroxostannates(II) undergo.  相似文献   

20.
The crystal structure of Cu(OH)Cl [a=5.555 (2) Å,b=6.671 (4) Å,c=6.127 (2) Å, =114.88 (3)°, space group P2I/a,Z=4] was refined for 810 observed reflections with sin /0.80 Å–1 toR=0.035. Crystals were synthesized under hydrothermal conditions. The copper atom is planar four coordinated by three oxygen atoms and one chlorine atom; two further chlorine atoms complete its coordination. The copper polyhedra share edges to build up sheets, which are connected by hydrogen bonds to the chlorine atoms of adjacent sheets.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号