首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dipole moment derivatives determined by ab initio and CNDO/2 calculations are compared with the corresponding data obtained from infrared intensities. For ethane, ethylene and formaldehyde, the recent results of quadratic force field calculations have been used to calculate experimental derivatives; for the latter two molecules, the individual intensities of certain overlapping bands were determined from the results of rovibrational analysis. The experimental dipole moment derivative with respect to the rocking symmetry coordinate, S10, of ethylene has been found to be 0.03 D, as opposed to the value of ca. 0.4 D reported previously. CNDO results agree both in sign and magnitude with ab initio dipole moment derivatives.  相似文献   

2.
We report rigorous calculations of rovibrational energies and dipole transition intensities for hydrogen peroxide using a new version of MULTIMODE as applied to molecules with torsional (reaction path) motion. The key features which permit such calculations for moderately sized polyatomic molecules of this general type are briefly described. A previous, accurate potential energy surface and a new high-level ab initio dipole moment surface are employed in these calculations. Detailed comparisons are made with high-resolution experimental spectral intensities from the HITRAN database.  相似文献   

3.
We report the results of a theoretical study of low-energy electron-H2O scattering. The calculations employ the complex Kohn variational technique and are undertaken at both the static-exchange and polarized-SCF levels. Target polarization effects are included by using an ab initio optical potential. Particular attention is paid to the complications attending electron scattering from target molecules that possess a permanent dipole moment. We describe the steps necessary to extract meaningful differential cross sections from fixed-nuclei calculations that ignore the rotational motion of the target. Comparison is made with experiment as well as other recent theoretical treatments.  相似文献   

4.
We report theoretical values for the transition moments of an extensive set of vibrational bands in the electronic ground state of (14)NH(3). For selected bands, we have further made detailed simulations of the rotational structure. The calculations are carried out by means of recently developed computational procedures for describing the nuclear motion and are based on a high-level ab initio potential energy surface, and high-level dipole moment surfaces, for the electronic ground state of NH(3). The reported theoretical intensity values are compared to, and found to agree very well with, corresponding experimental results. It is believed that the computational method, in conjunction with high-quality ab initio potential energy and dipole moment surfaces, can simulate rotation-vibration spectra of XY(3) pyramidal molecules prior to observation with sufficient accuracy to facilitate the observation of these spectra. By degrading the accuracy of selected elements of the calculations, we have also investigated the influence of customary approximations on the computed intensity values.  相似文献   

5.
We compare a new classical water model, which features Gaussian charges and polarizability (GCPM) with ab initio Car-Parrinello molecular dynamics (CPMD) simulations. We compare the total dipole moment, the total dipole moment distribution, and degree of hydrogen bonding at ambient to supercritical conditions. We also compared the total dipole moment calculated from both the electron density (partitioning the electron density among molecules based on a zero electron flux condition), and from the center of localized Wannier function centers (WFCs). Compared to CPMD, we found that GCPM overpredicts the dipole moment derived by partitioning the electron density and underpredicts that obtained from the WFCs, but exhibits similar trends and distribution of values. We also found that GCPM predicted similar degrees of hydrogen bonding compared to CPMD and has a similar structure.  相似文献   

6.
7.
Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 3,4-dimethoxybenzonitrile (DMBN) were carried out by the ab initio Hartree-Fock (HF) and density functional theory (DFT) with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The theoretical FTIR and FT-Raman spectra for the title molecule have been constructed.  相似文献   

8.
The estimate of the magnitude and the orientation of molecular electric dipole moments from the vector sum of bond or fragment dipole moments is a widely used approach in chemistry. However, the limitations of this intuitive model have rarely been tested experimentally, particularly for electronically excited states. Herein, we find rules for a number of indole derivatives by using rotationally resolved electronic Stark spectroscopy and ab initio calculations. Based on a natural‐bond‐orbital analysis, we discuss whether the vector additivity rule can be applied in a given electronic state. From a comparison of the experimental data with ab initio calculations, we deduced that the additivity model does not apply when the flow of electron density from the substituent is opposed to that inside the chromophore.  相似文献   

9.
The ab initio crystal orbital method including electrostatic long range corrections has been applied to determine the equilibrium structure of the infinite bent chain of hydrogen fluoride molecules using extended gaussian basis sets ranging from double zeta to a near Hartree-Fock limit quality. Electronic band structure, hydrogen bond energy and dipole moment are reported as well. A sufficiently large number of points has been computed with the double zeta basis to determine an almost complete force field. With the larger basis sets the most important force constants have been reevaluated. From these force constants the optically active vibrational frequencies, phonon dispersion curves, phonon density of states and zero point energy have been derived within the framework of the harmonic approximation.  相似文献   

10.
The authors present a new potential energy curve, electric dipole moment function, and spin-orbit coupling function for OH in the X 2Pi state, based on high-level ab initio calculations. These properties, combined with a spectroscopically parametrized lambda-type doubling Hamiltonian, are used to compute the Einstein A coefficients and photoabsorption cross sections for the OH Meinel transitions. The authors investigate the effect of spin-orbit coupling on the lifetimes of rovibrationally excited states. Comparing their results with earlier ab initio calculations, they conclude that their dipole moment and potential energy curve give the best agreement with experimental data to date. The results are made available via EPAPS Document No. E-JCPSAG-017709.  相似文献   

11.
A combined experimental and theoretical charge density study of an angiotensin II receptor antagonist (1) is presented focusing on electrostatic properties such as atomic charges, molecular electric moments up to the fourth rank and energies of the intermolecular interactions, to gain an insight into the physical nature of the drug-receptor interaction. Electrostatic properties were derived from both the experimental electron density (multipole refinement of X-ray data collected at T=17 K) and the ab initio wavefunction (single molecule and fully periodic calculations at the DFT level). The relevance of SO and SN intramolecular interactions on the activity of 1 is highlighted by using both the crystal and gas-phase geometries and their electrostatic nature is documented by means of QTAIM atomic charges. The derived electrostatic properties are consistent with a nearly spherical electron density distribution, characterised by an intermingling of electropositive and -negative zones rather than by a unique electrophilic region opposed to a nucleophilic area. This makes the first molecular moment scarcely significant and ill-determined, whereas the second moment is large, significant and highly reliable. A comparison between experimental and theoretical components of the third electric moment shows a few discrepancies, whereas the agreement for the fourth electric moment is excellent. The most favourable intermolecular bond is show to be an NHN hydrogen bond with an energy of about 50 kJ mol(-1). Key pharmacophoric features responsible for attractive electrostatic interactions include CHX hydrogen bonds. It is shown that methyl and methylene groups, known to be essential for the biological activity of the drug, provide a significant energetic contribution to the total binding energy. Dispersive interactions are important at the thiophene and at both the phenyl fragments. The experimental estimates of the electrostatic contribution to the intermolecular interaction energies of six molecular pairs, obtained by a new model proposed by Spackman, predict the correct relative electrostatic energies with no exceptions.  相似文献   

12.
We report here a measurement of electric dipole moments in highly vibrationally excited HDO molecules. We use photofragment yield detected quantum beat spectroscopy to determine electric field induced splittings of the J=1 rotational levels of HDO excited with 4, 5, and 8 quanta of vibration in the OH stretching mode. The splittings allow us to deduce mua and mub, the projections of dipole moment onto the molecular rotation inertial axes. We compare the measured HDO dipole moment components with the results of quantitative calculations based on Morse oscillator wave functions and an ab initio dipole moment surface. The vibrational dependence of the dipole moment components reflect both structural and electronic changes in HDO upon vibrational excitation; principally the vibrational dependence of the O-H bond length and bond angle, and the resulting change in orientation of the principal inertial coordinate system. The dipole moment data also provide a sensitive test of theoretical dipole moment and potential energy surfaces, particularly for molecular configurations far from equilibrium.  相似文献   

13.
We present ab initio calculations of the interaction-induced dipole moment of the Ar-H2 van der Waals dimer. The primary focus of our calculations is on the H2 bond length dependence of the dipole moment, which determines the intensities of both the collision-induced H2 upsilon = 1 <-- 0 fundamental band in gaseous Ar-H2 mixtures and the dopant-induced H2 upsilon = 1 <-- 0 absorption feature in Ar-doped solid H2 matrices. Our calculations employ large atom-centered basis sets, diffuse bond functions positioned between the two monomers, and a coupled cluster treatment of valence electron correlation; core-valence correlation effects appear to make negligible contributions to the interaction-induced dipole moment for the Ar-H2 configurations considered here.  相似文献   

14.
Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of ferulic acid (FA) (4-hydroxy-3-methoxycinnamic acid) were carried out by using density functional (DFT/B3LYP/BLYP) method with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the FA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of FA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have been constructed.  相似文献   

15.
Molecular simulations for hydrogen physisorption with corannulene molecules arranged according to their crystal structure result in good agreement with the weight-percent hydrogen stored as determined experimentally employing a 3-g sample of highly crystalline corannulene at ambient temperatures and 72 bar of pressure. Calculated enthalpies of adsorption for corannulene/hydrogen molecular systems obtained from ab initio calculations which take into account electron correlation via second-order M?ller-Plesset perturbation theory are in good agreement with literature experimental enthalpies of adsorption for activated carbons interacting with molecular hydrogen. Ab initio results also show that corannulene molecules arranged in a sandwich structure are important for approximately doubling the binding energy of corannulene interacting with molecular hydrogen through a cooperative interaction. To test the effects of finite temperatures and pressures, stack arrays were used as input for molecular dynamics simulations and indicate that physisorption mechanisms including van der Waals forces and dipole-induced dipole interactions may yield enhanced adsorption capacity in relation to other carbon-based materials. These results will be instrumental in identifying interlayer separations of an array of corannulene or related molecules that may provide a high weight percent of physisorbed hydrogen.  相似文献   

16.
In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.  相似文献   

17.
We present a fundamentally new approach for measuring the transition dipole moment of molecular transitions, which combines the benefits of quantum interference effects, such as the Autler-Townes splitting, with the familiar R-centroid approximation. This method is superior to other experimental methods for determining the absolute value of the R-dependent electronic transition dipole moment function mu(e)(R), since it requires only an accurate measurement of the coupling laser electric field amplitude and the determination of the Rabi frequency from an Autler-Townes split fluorescence spectral line. We illustrate this method by measuring the transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) rovibronic transition and compare our experimental results with our ab initio calculations. We have compared the three-level (cascade) and four-level (extended Lambda) excitation schemes and found that the latter is preferable in this case for two reasons. First, this excitation scheme takes advantage of the fact that the coupling field lower level is outside the thermal population range. As a result vibrational levels with larger wave function amplitudes at the outer turning point of vibration lead to larger transition dipole moment matrix elements and Rabi frequencies than those accessible from the equilibrium internuclear distance of the thermal population distribution. Second, the coupling laser can be "tuned" to different rovibronic transitions in order to determine the internuclear distance dependence of the electronic transition dipole moment function in the region of the R-centroid of each coupling laser transition. Thus the internuclear distance dependence of the transition moment function mu(e)(R) can be determined at several very different values of the R centroid. The measured transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) transition is 5.5+/-0.2 D compared to our ab initio value of 5.9 D. By using the R-centroid approximation for this transition the corresponding experimental electronic transition dipole moment is 9.72 D at Rc = 4.81 A, in good agreement with our ab initio value of 10.55 D.  相似文献   

18.
The solvent effect on the C-N rotational barriers of N,N-dimethylthioformamide (DMTF) and N,N-dimethylthioacetamide (DMTA) has been investigated using ab initio theory and NMR spectroscopy. Selective inversion recovery NMR experiments were used to measure rotational barriers in a series of solvents. These data are compared to ab initio results at the G2(MP2) theoretical level. The latter are corrected for large amplitude vibrational motions to give differences in free energy. The calculated gas phase barriers are in very good agreement with the experimental values. Solvation effects were calculated using reaction field theory. This approach has been found to give barriers that are in good agreement with experiment for many aprotic, nonaromatic solvents that do not engage in specific interactions with the solute molecules. The calculated solution-phase barriers for the thioamides using the above solvents are also in good agreement with the observed barriers. The solvent effect on the thioamide rotational barrier is larger than that for the amides because the thioamides have a larger ground-state dipole moment, and there is a larger change in dipole moment with increasing solvent polarity. The transition-state dipole moments for the amides and thioamides are relatively similar. The origin of the C-N rotational barrier and its relation to the concept of amide "resonance" is examined.  相似文献   

19.
Using the helium nanodroplet isolation setup at the ultrabright free‐electron laser source FELIX in Nijmegen (BoHeNDI@FELIX), the intermolecular modes of water dimer in the frequency region from 70 to 550 cm?1 were recorded. Observed bands were assigned to donor torsion, acceptor wag, acceptor twist, intermolecular stretch, donor torsion overtone, and in‐plane and out‐of‐plane librational modes. This experimental data set provides a sensitive test for state‐of‐the‐art water potentials and dipole moment surfaces. Theoretical calculations of the IR spectrum are presented using high‐level quantum and approximate quasiclassical molecular dynamics approaches. These calculations use the full‐dimensional ab initio WHHB potential and dipole moment surfaces. Based on the experimental data, a considerable increase of the acceptor switch and a bifurcation tunneling splitting in the librational mode is deduced, which is a consequence of the effective decrease in the tunneling barrier.  相似文献   

20.
The electric dipole moment and the static dipole polarizability of the hydrogen iodide molecule were studied using sophisticated correlated and relativistic methods. Both scalar and spin–orbit relativistic effects were carefully accounted for. We conclude that the large differences between the theoretical and experimental dipole moment, the dipole moment derivative and the polarizability cannot be reconciled by improved account of electron correlation and relativistic effects. The most striking difference between theory and experiment is observed for the polarizability anisotropy. We believe that experimental data, namely the experimental dipole moment (the most recent value is 0.176 au as compared to our best theoretical estimate, 0.154±0.003 au), the parallel polarizability (44.4 and 38.47±0.05 au) and the anisotropy (11.4 and 2.33±0.05 au) must be inaccurate. Experimental and theoretical perpendicular polarizability components (33.0 and 36.14±0.05 au,) and the mean polarizability (36.8 and 36.92±0.05 au) agree better. Our vibrationally corrected relativistic CCSD(T) results represent the most sophisticated predictions of electric properties of HI obtained so far.Contribution to the Björn Roos Honorary Issue  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号