首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
潘华  张剑  张高勇  孙彦庆 《应用化学》2007,24(11):1250-0
利用相图方法研究了聚胺(PA)与DNA的相互作用,初步考察了NaCl对精胺与DNA相互作用的影响。研究结果表明,聚胺与DNA之间不仅存在着强烈的静电作用,同时聚胺与DNA碱基对之间也存在着相互作用。在较低的精胺(SPM)浓度(0.025mmol/L)时就开始出现浊度,而在相同的条件下,亚精胺(SPD)-DNA体系和盐酸胍(GD)-DNA体系在聚胺浓度高达10mmol/L时浊度曲线仍无明显变化;SPD-DNA体系与GD-DNA体系的A260曲线相比,前者随着聚胺浓度的增加吸光度逐渐下降,说明SPD与DNA作用强于GD;由此可见聚胺所带正电荷越多,其与DNA的作用越强,水溶液条件下亚精胺(SPD)和GD与DNA间有较弱的相互作用,但不能使DNA产生相分离;加入NaCl后,由于外加电解质的静电屏蔽效应,SPM与DNA之间的相互作用减弱。NaCl浓度越大,二者之间相互作用越弱,SPM-DNA体系相图曲线的线性相关性越低。  相似文献   

2.
纳米二氧化钛由于其特有的紫外吸收和光催化活性,在紫外催化下,对质粒DNA会产生解旋作用,但是,避光作用下纳米二氧化钛对DNA的作用未知。本实验将纳米二氧化钛和DNA在完全避光的条件下相互作用,二者产生明显的绑定效应。通过凝胶电泳、红外、透射电镜检测研究其反应机理,发现绑定效应和纳米二氧化钛的浓度、作用时间呈正相关,绑定位点发生在DNA的磷酸基团,并且研究结果表明,纳米二氧化钛对线形结构的DNA具有最强的绑定作用。这些实验结果为研究纳米二氧化钛对DNA的损伤效应引出了一条新思路。  相似文献   

3.
本文讨论了样品浓度对苯并氮杂冠醚化合物-氘代氯仿溶液~1H NMR镨及~1H纵向弛豫时间的影响(稀释位移效应)。在实验基础上提出了苯并氮杂冠醚化合物在氯仿中的叔胺-叔铵盐交换作用机制。以此解释了稀释位移效应,并得到了三种冠醚化合物从叔胺到叔铵盐的反应平衡常数K_2和交换速率常数k,另外,本文还讨论了冠醚环中氮原子上取代基对稀释位移效应的影响,  相似文献   

4.
本实验研究了不同浓度NaCl对疏水缔合聚合物/SDBS复合体系的流变性能的影响,研究表明:不同浓度的NaCl对聚/表体系的作用模型各异,其在低NaCl浓度时,当SDBS浓度为0~100mg/L时,体系出现增黏,最大增黏率为566.5%,增黏幅度随着NaCl浓度增加而下降;而在高NaCl浓度时,体系同样出现增黏,增黏区间随着NaCl浓度的增加而增大。通过流变测试、荧光光谱实验,进一步验证了不同NaCl浓度对聚/表相互作用的影响,发现NaCl的加入增强了聚/表相互作用,促进了聚/表混合聚集体的形成;同时发现NaCl的浓度影响着SDBS的溶解度。  相似文献   

5.
以矮牵牛为材料,采用组织培养的方法,探讨硝酸稀土对NaCl胁迫下矮牵牛幼苗生长抑制的缓解效应.结果表明,在试验区间范围内,采用90 mg·L-1硝酸稀土对0.4%的NaCl胁迫下矮牵牛的株高、单株鲜重和根长有明显的缓解效应,分别为:14.5%,19.9%和53.2%,对生根率缓解效应不明显;当NaCl浓度为0.8%,硝酸稀土对株高和单株鲜重缓解效应不明显,对根长和生根率反而有抑制作用,抑制效应分别达到34.6%和48.4%.在一定范围内硝酸稀土对NaCl胁迫矮牵牛根系的POD,SOD和CAT同工酶的活性均有促进作用,表达种类无明显变化.随着硝酸稀土处理浓度的提高,叶片POD同工酶活性呈现低-高-低变化,表达种类无明显变化;SOD同工酶活性增强,表达种类增多;CAT同工酶活性下降,表达种类减少.  相似文献   

6.
戴国亮  胡文瑞 《化学学报》2003,61(4):520-525
用动态光散射法研究了不同浓度NaCl对液—液扩散法生长溶菌酶晶体的影响, 并测量了晶体生长前后体系的Zeta电势.结果表明,NaCl浓度较高时,在溶菌酶溶 液—凝胶界面处会发生液液分层现象,溶液中一直存在较大的聚集体,生长出的晶 体质量较差.而在合适的NaCl浓度下,随着溶液Zeta电势降低,溶液中溶菌酶的大 的聚集体发生解聚集,生长出的晶体质量较高.  相似文献   

7.
应用荧光探针和zeta电位方法研究了电解质NaBr、NaCl、KCl和有机溶剂乙醇对DNA与Gemini表面活性剂相互作用的影响. DNA诱导的表面活性剂类胶束在较低浓度即可生成, 这一浓度称为临界聚集浓度(CAC). Gemini表面活性剂比具有相同烷烃链长的单体表面活性剂更易聚集, 对应的CAC较低. 实验结果表明, 盐(NaBr)浓度对DNA/表面活性剂体系的CAC影响不大, 阴、阳离子的种类则对该体系有不同程度的影响. 阴离子(Br-、Cl-)对体系的CAC有显著的影响, 但阳离子(Na+、K+)的差异对CAC影响不大. 极性溶剂乙醇对DNA与表面活性剂相互作用的影响比较复杂. 乙醇浓度较低时有利于表面活性剂的聚集, 使得CAC减小; 而浓度较高时, 则不利于表面活性剂聚集,从而使CAC变大. 乙醇可显著改变DNA/表面活性剂复合物的zeta电位.  相似文献   

8.
疏水缔合聚合物重均分子量的测定   总被引:2,自引:0,他引:2  
采用毛细管法和荧光探针法研究了疏水缔合聚合物在不同甲酰胺浓度和盐浓度的溶剂中的特性黏数和疏水缔合作用强度.找到可以消除缔合作用和聚电解质效应的溶剂条件,用静态光散射法测定疏水缔合聚合物的重均分子量.结果表明,NaCl能够有效的屏蔽聚电解质效应,但是不能消除缔合作用,而且由于NaCl增加了溶液的极性,会进一步促进疏水缔合作用,疏水缔合聚合物以聚集体形态存在溶液中,因此,在NaCl溶剂中测得的疏水缔合聚合物的重均分子量不是真实分子量;而甲酰胺可以完全破坏疏水缔合作用,使聚合物分子以单分子态分散在溶液中,进而测得疏水缔合聚合物的真实分子量.当溶剂中的NaCl浓度为0.2 mol/L、甲酰胺体积分数为50%时,可准确测定疏水缔合聚合物的重均分子量.当缔合作用消除后再改变甲酰胺浓度,测得的重均分子量不再变化;聚电解质效应消除后,盐离子浓度的变化不会再改变测得的重均分子量结果.  相似文献   

9.
在pH 5.5的2-(N-吗啉)-乙磺酸缓冲液中,底物DNA和酶DNA杂交形成双链DNA(dsDNA).当加入UO 2+后,dsDNA中的底物DNA链被裂解,释放的裂解链DNA吸附在金纳米粒子(GN)表面,未吸附裂解链DNA的GN在NaCl存在下发生聚集,在610 nm处有一最强的共振散射峰.随着UO 2+的浓度增大,...  相似文献   

10.
通过测定全氟辛酸铵(APFO)、全氟辛酸三甲铵(TMHPFO)、全氟辛酸三乙铵(TEHPFO)在不同浓度NaCl (0.1, 0.3, 0.5 mol•L-1)存在时水溶液的表面张力曲线, 考察不同反离子的氟表面活性剂其表面活性随无机盐浓度的变化. 结果表明, NaCl对APFO的胶束化有明显的促进作用|对于TMHPFO和TEHPFO则在NaCl浓度较低时有很小的促进作用, NaCl浓度较高时由于Na和N(CH3) (或N(CH2CH3) )之间的离子交换作用反而临界胶束浓度(cmc)增大. APFO, TMHPFO的最低表面张力(γcmc)随着NaCl浓度的增大而增大. 而对于TEHPFO, 少量NaCl的加入有利于降低γcmc、然后随着NaCl浓度的增大TEHPFO的γcmc增大. 这说明, 加盐溶液中始终存在着屏蔽效应和离子交换作用的竞争, 随着NaCl浓度增大离子交换趋势增大|对于疏水性较高的三乙铵离子在NaCl存在的情况下离子交换作用导致的γcmc升高需要更高的NaCl浓度才能显现. 通常认为外加无机盐是增强表面活性剂的表面活性的方法之一, 本工作表明, 对于有些反离子为有机阳离子的氟表面活性剂, 外加无机盐, 如NaCl, 不仅不能起到显著的增效作用, 浓度大时甚至会降低表面活性剂的效能. 所以这类表面活性剂在实际使用时应尽量避免高盐环境.  相似文献   

11.
Qiu T  Zhang B  Hu ZY  Tang JH  Xie HP  Gu BR 《The Analyst》2012,137(11):2608-2613
The approach for DNA detection was established by using a fluorescence resonance energy transfer (FRET) system, in which the energy donor was poly-diallyldimethylammonium chloride-protected quantum dots and the energy receptor was ethidium bromide (EB) inserting into the double stranded DNA. The concentration of the probe DNA, EB and NaCl was optimized. Under the optimized conditions, the FRET system has a stable signal and good reproducibility. The linear range is 7.7-61.6 nM with the correlation coefficient of 0.998 and the limit of detection is 7.7 nM. This method is simple and sensitive, and makes the label-free DNA detection come true.  相似文献   

12.
郑赛晶  林祥钦 《中国化学》2003,21(7):767-771
A strong interaction between double stranded calf-thymus DNA (ds-DNA) and adrenaline in solution, but no interaction between single stranded calf-thymus DNA (ss-DNA) and adrenaline was observed by the use of UV-visible spectroscopy and voltammetric techniques. It is suggested that the interaction leads to an intercalation of adrenaline molecules into the groove of ds-DNA and the formation of ds-DNA (adrenallne)n complex. The binding site size of the interaction of adrenaline with CT-DNA in nucleotide phosphate [ NP] has been determined as 25. The interaction of different concentration adrenaline with DNA modified GCE shows that the DNA modified GCE can be a good tool to detect lower concentration adrenaline.  相似文献   

13.
The ability to precisely measure and monitor temperature at high resolution at the nanoscale is an important task for better understanding the thermodynamic properties of functional entities at the nanoscale in complex systems, or at the level of a single cell. However, the development of high‐resolution and robust thermal nanosensors is challenging. The design, assembly, and characterization of a group of thermal‐responsive deoxyribonucleic acid (DNA) joints, consisting of two interlocked double‐stranded DNA (dsDNA) rings, is described. The DNA nanojoints reversibly switch between the static and mobile state at different temperatures without a special annealing process. The temperature response range of the DNA nanojoint can be easily tuned by changing the length or the sequence of the hybridized region in its structure, and because of its interlocked structure the temperature response range of the DNA nanojoint is largely unaffected by its own concentration; this contrasts with systems that consist of separated components.  相似文献   

14.
Unrestrained molecular dynamics (MD) simulations have been carried out to characterize the stability of DNA conformations and the dynamics of A-DNA→B-DNA conformational transitions in aqueous RbCl solutions. The PARM99 force field in the AMBER8 package was used to investigate the effect of RbCl concentration on the dynamics of the A→B conformational transition in the DNA duplex d(CGCGAATTCGCG)2 . Canonical Aand B-form DNA were assumed for the initial conformation and the final conformation had a length per complete turn that matched the canonical B-DNA. The DNA structure was monitored for 3.0 ns and the distances between the C5′ atoms were obtained from the simulations. It was found that all of the double stranded DNA strands of A-DNA converged to the structure of B-form DNA within 1.0 ns during the unrestrained MD simulations. In addition, increasing the RbCl concentration in aqueous solution hindered the A→B conformational transition and the transition in aqueous RbCl solution was faster than that in aqueous NaCl solution for the same electrolyte strength. The effects of the types and concentrations of counterions on the dynamics of the A→B conformational transition can be understood in terms of the variation in water activity and the number of accumulated counterions in the major grooves of A-DNA. The rubidium ion distributions around both fixed A-DNA and B-DNA were obtained using the restrained MD simulations to help explain the effect of RbCl concentration on the dynamics of the A→B conformational transition.  相似文献   

15.
A kinetic study of the interaction of gold nanoparticles capped with N-(2-mercaptopropionyl)glycine with double stranded DNA was carried out in water and in salt (NaCl) solutions. The kinetic curves are biexponential and reveal the presence of three kinetic steps. The dependence of the reciprocal fast and slow relaxation time, on the DNA concentration, is a curve and tends to a plateau at high DNA concentrations. The simplest mechanism consistent with the kinetic results involves a simple three-step series mechanism reaction scheme. The first step corresponds to a very fast step that is related to a diffusion controlled formation of an external precursor complex (DNA, AuNPs); the second step involves the formation of a (DNA/AuNPs)(I) complex, as a result of the binding affinity between hydrophilic groups of the tiopronin and the DNA grooves. Finally, the third step has been interpreted as a consequence of a conformational change of the (DNA/AuNPs)(I) complex formed in the second step, to a more compacted form (DNA/AuNPs)(II). The values of the rate constants of each step decrease as NaCl concentration increases. The results have been discussed in terms of solvation of the species and changes in the viscosity of the solution.  相似文献   

16.
Elucidating structure function relationships of DNA in cellular processes requires fast, reliable methods that can be applied to picomole amounts of sample. Higher order structure can be inferred by distinguishing paired and unpaired regions. It is shown here that enzymatic digestion coupled with product analysis by matrix-assisted laser desorption ionization (MALDI) is able to identify unpaired bases within structured DNA regions. The method is demonstrated with DNA duplexes having a five nucleotide mismatch as a 5' overhang, a 3' overhang, and an internal loop. Exo- and endonuclease digestions are performed under solution conditions (temperature, annealing, and enzyme buffers) which promote base pairing and specific enzyme activity. For each type of mismatch, the length and sequence of the single stranded region can be inferred from MALDI spectra taken as a function of digestion time.  相似文献   

17.
The interaction of ethidium bromide (2,7-diamino-10-ethyl-9-phenylphenanthridinium bromide; EB) with double stranded (ds) calf thymus DNA and thermally denatured single stranded (ss) DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer, pH 5.0. As a result of intercalation of this dye between the base pairs of dsDNA, the characteristic peak of dsDNA, due to the oxidation of guanine residues, decreased and after a particular concentration of EB a new peak at +0.81 V appeared, probably due to the formation of a complex between dsDNA and EB. The non-intercalated EB gives another peak, but at an increased concentration of the dye. A similar behaviour was observed during the interaction of the dye with ssDNA.Furthermore, the interaction of EB with ds, ss and supercoiled (sc) DNA was studied at the hanging mercury drop electrode (HMDE) surface by means of alternating current voltammetry in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. dsDNA yields a smaller peak at −1.42 V (peak III) compared to the one yielded by ssDNA, since the latter is a relaxed and more accessible form. By addition of EB into the buffer solution an increase of peak III was observed in the dsDNA form as well as in ssDNA resulting from their interaction with EB. Furthermore, the appearance of peak III in covalently closed circular scDNA after exposure to increasing concentrations of EB is a result of the introduction of ‘free ends’ in DNA affecting its structural integrity.  相似文献   

18.
The exonucleolytic degradation of high-density labeled DNA by exonuclease III was monitored using two-color fluorescence correlation spectroscopy (FCS). One strand of the double stranded template DNA was labeled on either one or two base types and additionally at one end via a 5' Cy5 tagged primer. Exonucleolytic degradation was followed via the diffusion time, the brightness of the remaining DNA as well as the concentration of released labeled bases. We found a hydrolyzation rate of about 11 to 17 nucleotides per minute per enzyme (nt/min/enzyme) for high-density labeled DNA, which is by a factor of about 4 slower than for unlabeled DNA. The exonucleolytic degradation of a 488 base pair long double stranded DNA resulted in a short double stranded DNA segment of 112 ± 40 base pairs (bp) length with two single-stranded tails.  相似文献   

19.
A sequence-specific DNA that binds EcoRI endonuclease was immobilized on glycidioloxypropyl-silica and Sepharose by cyanogen bromide (CNBr)-activated coupling. Elution of bound enzyme by conventional affinity strategies (increase of salt concentration) or by catalysis-induced elution (adding a Mg2+ cofactor required for catalysis) was compared. Greater yield and fold-purification was obtained with catalysis-induced elution for both DNA-silica and DNA-Sepharose columns, and silica gives higher performance than Sepharose. Sodium dodecylsulfate polyacrylamide gel electrophoresis showed primarily a single band for EcoRI endonuclease for catalysis-induced elution from DNA-silica columns. Since catalysis-induced elution decreases the lifetime of DNA affinity columns, an alternative approach for preparing re-usable DNA columns was also developed. In this approach, a single stranded adapter DNA sequence is first coupled to silica or Sepharose and then annealed with another DNA sequence that contains a complementary, single stranded tail and the duplex binding site for EcoRI endonuclease. After use, replacing the hydrolyzed DNA regenerates the column. For this adapter approach, Sepharose gives better purity than silica and comparable yields and catalytic based elution gave the highest purity and yield, regardless of support. Substrate DNA with either a tail (for annealing to the column) at one end or both ends were compared and the former gave higher purity. Finally, enzyme binding to the substrate in solution ("trapping") or on a pre-bound substrate column was compared and trapping gave higher yield and similar purity to the alternative. Thus, trapping with a single tailed substrate oligonucleotide on a Sepharose adapter column and using catalytic elution gave the highest performance.  相似文献   

20.
Boron-doped diamond (BDD) electrodes have been examined for the electrochemical oxidation of underivatized-nucleic acids in terms of single stranded and double stranded DNA. Cyclic voltammetry and square wave voltammetry have been used to study the oxidation reactions and to detect DNA without derivatization or hydrolysis steps. At the diamond electrode, at least two well-defined voltammetric peaks were observed for both single stranded and double stranded DNA. Diamond electrode is the first material to show a well-defined voltammetric peaks for adenine group oxidation directly in the helix structure of nucleic acid due to its wide potential window. For single stranded DNA, a third peak, related to the pyrimidine group oxidation was also observed. As-deposited diamond film with predominantly hydrogen-terminated surface exhibited superior performance over oxygen-terminated diamond in terms of sensitivity. However, by optimizing the ionic strength, sensitivity of O-terminated films could be improved. Linear calibration results have shown linearity of current with concentration in the range 0.1-8 microg mL(-1) for both guanine and adenine residues at as-deposited BDD. Detection limits (S/N = 3) of 3.7 and 10 ng mL(-1) for adenine and guanine residue in single stranded DNA, respectively, and 5.2 and 10 ng mL(-1) for adenine and guanine residue in double stranded DNA, respectively, were observed. This work shows the promising use of diamond as an electrochemical detector for direct detection of nucleic acids. The results also show the possibility of using the oxidation peak current of adenine group that is more sensitive for the direct detection of nucleicacids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号