首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以三(2-吡啶甲基)胺(tpa)作为螯合配体,合成了配合物[Ru(tpa)(H2biim)].(ClO4)2(1;H2biim=2,2′-联咪唑);利用紫外-可见吸收光谱仪和核磁共振谱仪研究了合成的配合物与Cl-、Br-、I-、NO3-、HSO4-、H2PO4-、OAc-、F-离子之间的作用.结果表明,配合物1与Cl-、Br-、I-、NO3-、HSO4-、H2PO4-之间存在氢键作用;当OAc-阴离子与1作用时,强的氢键作用使H2biim上的一个H转移到OAc-上,使1脱去一个质子,溶液颜色由浅黄绿色变为橘色.而F-能形成非常稳定的HF2-,可使配合物1联咪唑上的两个质子逐步脱去,相应的溶液颜色由浅黄绿色变为橘色,最终变为红色.因此,合成的配合物可以对多种阴离子实现目视识别.  相似文献   

2.
配合物Fe(pda)2(H2O)4和[FeCo(pda)4(H2O)4]n的合成与晶体结构   总被引:1,自引:0,他引:1  
采用水热法合成了2个3-(3-吡啶基)丙烯酸的配合物:Fe(pda)2(H2O)4(1)和[FeCo(pda)4(H2O)4]n(2)(pda=3-(3-吡啶基)丙烯酸),用红外光谱、元素分析、热重-差热以及X-射线衍射单晶结构分析进行了表征.2个配合物都属于单斜晶系,配合物1的空间群为P21/n,配合物2的为P21/c.配合物1是一个pda配体中仅吡啶基氮原子参与配位、而羧基上的氧原子未参与配位的单核结构,通过大量的氢键作用形成三维超分子体系.2是pda配体桥联Fe和Co的异核二维层状配位聚合物;配体吡啶基上的氮原子和羧基上的氧原子都参与了配位,其中羧基采用单齿配位模式.  相似文献   

3.
在常温下, 通过溶剂置换法制备了[Ni(qina)2(H2O)2]·2DMSO单晶, 其中qina-为喹哪啶酸根, DMSO为二甲亚砜. 配合物属于单斜晶系, C2/m空间群. 2个qina-配体以氮原子和氧原子与Ni(Ⅱ)离子反式螯合配位, 2个H2O分子则以氧原子与Ni(Ⅱ)离子轴向配位, 形成八面体配合物. 配合物分子之间通过氢键和π-π堆积等弱相互作用构筑成三维超分子结构. 该配合物能显著提高乙酸-1-萘酯的水解反应速率, 当配合物浓度为1.0×10-4 mol/L时, 在pH=8.44的乙酸-1-奈酯体系中, 酯的水解速率提高了365倍.  相似文献   

4.
采用常温晶化法合成了1个新的金属配合物与氟化锆的复合物[Co(en)3]2(Zr2F12)(ZrF6H2O)·H2O(1), 并对其单晶结构进行了解析. 该化合物属单斜晶系, C2/c 空间群, a=3.06110(17) nm, b=0.877680(5) nm, c=1.50811(9) nm, β=118.897(4)°, V =3.547(4) nm3, Z=8. 该化合物由双核氟化锆阴离子簇 [Zr2F12]4-和单核氟化锆阴离子簇 [ZrF6H2O]2-与钴胺配合物阳离子 [Co(en)3]3+ 及水分子组成, 氟化锆与钴胺配合物之间存在大量的氢键. 该化合物的表面光电压谱在339 nm处出现了光电信号. 这种特殊的光电现象有可能归因于该化合物的钴胺配合物阳离子与氟化锆阴离子簇之间存在的协同作用.  相似文献   

5.
合成了双核银配合物[Ag2(μ-(4-MeC6H4O)2PS2)2(Phen)2](phen为1,10-邻菲咯啉),用元素分析、红外光谱、紫外-可见光谱和热重分析进行了表征,并用X-射线衍射法测定了晶体结构。该晶体属于正交晶系,Pbca空间群,晶胞参数为:a=1.2035(2)nm,b=1.638 3(3)nm,c=2.517 1(5)nm,V=4.963 1(17)nm 3,Dc=1.599 g.m-3,Z=4,F(000)=2 416,μ(Mo Kα)=1.072 mm-1,S=1.066,(Δ/σ)max=0.001,R1=0.037 6,wR2=0.088 8(I>2σ(I))。晶体结构研究表明每个Ag原子与不同配体(4-MeC6H4O)2PS2-的2个S原子和1个phen配体的2个N原子配位形成了具有椅式构型的八元环Ag2S4P2,Ag原子为畸变四面体AgS2N2构型,配合物通过phen的π-π堆积形成了一维结构,分子间的弱氢键C-H…O和C-H…π作用使分子进一步形成了三维网络结构。  相似文献   

6.
赵明星  高颖  孟跃  倪生良 《化学通报》2014,77(11):1116-1119
在140℃下,以3-溴-4-甲基苯甲酸和咪唑为配体,通过水热法在甲醇/水混合溶剂中反应24 h合成了锌(Ⅱ)配合物Zn(C3H4N2)2(C8H6O2Br)2。通过元素分析、红外光谱、热重分析和X射线粉末衍射对配合物进行了结构表征,同时用X射线单晶衍射分析确定了其晶体结构。结果表明,其晶体属单斜晶系,空间群为C2/c,晶胞参数:a=13.257(3),b=9.765(2),c=20.494(4),β=107.79(3)°,V=2526.3(9)3,Dc=1.655g·cm-3,μ=4.170mm-1,F(000)=1248,Z=4,最终残差因子R1=0.0552,wR2=0.1378。配合物为单核结构,中心锌(Ⅱ)离子与来自2个3-溴-4-甲基苯甲酸根的2个O原子及2个咪唑分子的2个N原子配位,形成了畸变的四方锥几何体。晶体内,分子间则通过N—H…O氢键作用在ab面形成了层状结构。研究了配合物的发光性质。  相似文献   

7.
以异烟酸和邻菲咯啉(phen)为原料,采用水热合成方法,合成了一个新的配位聚合物{[Cd2(phen)2(H2O)2(C6H5NO2)2]·(ClO4)}n,测定了其晶体结构.结果表明:该配合物晶体属单斜晶系,空间群P21/n.与中心镉(Ⅱ)离子配位的3个氧原子分别来自2个异烟酸根和1个水分子,3个氮原子分别来自1个异烟酸根和1个邻菲咯啉,形成六配位变形八面体结构.由于异烟酸的桥联作用及氢键作用,配合物堆积成三维网状结构;同时配合物通过异烟酸的羧基双齿桥联配位以及邻菲咯啉和水分子作为端基配位.形成了双核笼状结构,其Cd(Ⅱ)…Cd(Ⅱ)距离为0.8798 nm.此外,还研究了该聚合物的荧光性质.  相似文献   

8.
用/N-n-Bu4MnO4,醋酸锰,2-氯丙酸在无水乙醇溶剂中合成了三核锰配合物[Mn3O(O2CCHlCH3)6(py)2(H2O)]·2/3H2O(1·2/3H2O).X-射线单晶衍射确定了其晶体结构.晶体属单斜晶系、C2/c空间群.3个Mn原子构成等腰三角形结构.变温磁化率研究表明配合物1存在反铁磁性交换作用.  相似文献   

9.
合成了一种新的双核倒反中心的稀土镧配合物{La[o-C6H4(NO2)(CO2)]3·(DMF)2}2. 通过元素分析、 核磁共振谱和红外光谱对配合物的组成和结构进行了表征,  用热重分析研究了该配合物的热稳定性,  用X射线单晶衍射法测定了其晶体结构. 镧配合物{La[o-C6H4(NO2)(CO2)]3·(DMF)2}2晶体属三斜晶系, 空间群P1,  晶胞参数a=1.902(2) nm, b=1.245 0(2) nm, c=1.298 7(2) nm, α=64.555(2)°, β=66.348(2)°, γ=71.920(2)°, V=1.569 5(5) nm3, Dc=1.658 Mg/m3, Z=2, μ=1.437 mm-1, F(000)=784. 配合物中有2个La(Ⅲ)被4个邻硝基苯甲酸的羧酸根的负氧离子桥联, 每个La(Ⅲ)的中心离子配位数为9,  配位原子分别来自于7个邻硝基苯甲酸的羧酸根的负氧离子和2个DMF的羰基氧原子. 化合物中的氢键和π…π堆积作用使其成为三维立体结构. 同时发现了标题化合物固体具有光致发光现象, 发光性能测试表明, 配合物具有很好的荧光性质.  相似文献   

10.
配合物[Cu(H2O)(C12H8N2)2].2ClO4的合成、性质及晶体结构   总被引:1,自引:0,他引:1  
《化学研究与应用》2001,13(5):506-508
合成了配合物[Cu(H2O)(C12H8N2)2]*2ClO4(C12H8N2为1,10-邻菲咯啉),用元素分析、摩尔电导、红外光谱及电子光谱进行了表征,并测定了配合物的晶体结构.该晶体属单斜晶系,空间群为CC;晶胞参数a=1.9177(2)nm,b=0.81994(0)nm,c=1.62458(14)nm,β=100.104(6)°;V=2.5419(4)nm3,Z=4,F(000)=1300,DC=1.693g/cm3,R=0.0430,wR=0.1195.中心铜(Ⅱ)离子与两个1,10-邻菲咯啉的四个N原子和一个水分子的氧原子配位,形成了一个变形的三角双锥结构.  相似文献   

11.
Eight ionic organotin compounds [R2SnCl2(2-quin)](HNEt3)+ have been synthesized by reactions of 2-quinH with R2SnCl2 (R = PhCH21, 2-Cl-C6H4CH22, 4-Cl-C6H4CH23, 2-F-C6H4CH24, 4-F-C6H4CH25, 4-CN-C6H4CH26, Ph 7, 2,4-Cl2-C6H3CH28) in the presence of organic base NEt3, and their structures have been characterized by elemental analysis, IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopies. The structure of [(2,4-Cl2-C6H3CH2)2SnCl2(2-quin)](NEt3)+ (8) has been determined by X-ray diffraction study. Studies show that compound 8 has a monomeric structure with the central tin atom six-coordinate in a distorted octahedral configuration and the nitrogen atoms of the 2-quin ligands are coordinating to the tin atom in all the eight compounds.  相似文献   

12.
Borohydrides have been recently hightlighted as prospective new materials due to their high gravimetric capacities for hydrogen storage. It is, therefore, important to under-stand the underlying dehydrogenation mechanisms for further development of these ma-terials. We present a systematic theoretical investigation on the dehydrogenation mecha-nisms of theMg2(BH4)2(NH2)2 compounds. We found that dehydrogenation takes place most likely via the intermolecular process, which is favorable both kinetically and thermo-dynamically in comparison with that of the intramolecular process. The dehydrogenation of Mg2(BH4)2(NH2)2 initially takes place via the direct combination of the hydridic H in BH4- and the protic H in NH2-, followed by the formation of Mg-H and subsequent ionic recombination of Mg-Hδ- …Hδ+N.  相似文献   

13.
A series of reactivity studies of the carboamination pre-catalyst [Ti(NMe2)3(NHMe2)][B(C6F5)4] as well as the preparation of other catalysts are reported in this work. Treatment of [Ti(NMe2)3(NHMe2)][B(C6F5)4] with the aldimines Ar′NCHtol (Ar′ = 2,6-Me2C6H3, tol = 4-MeC6H4), and depending on the reaction conditions, results in isolation of [Me2NCHR′][B(C6F5)4] (1) or (Me2N)2CHtol, as well as the asymmetric titanium dimer [(Me2N)2(HNMe2)Ti(μ2-N[2,6-Me2C6H3])2Ti(NHMe2)(NMe2)][B(C6F5)4] (2). Protonation of CpTi(NMe2)3 and CpTi(NMe2)3 results in isolation of the salts, [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (3) and [CpTi(NMe2)2(NHMe2)][B(C6F5)4] (4), respectively. Treatment of compounds 3 or 4 with H2N[2,6-iPr2C6H3] results in formation of the imido salts [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (5) (58% yield) or [CpTi(N[2,6-iPr2C6H3])(NHMe2)2][B(C6F5)4] (6). When Ti(NMe2)4 is treated with [Et3Si][B(C6F5)4], the salt [Ti(NMe2)3(N[SiEt3]Me2)][B(C6F5)4] (7) is obtained, and treatment of the latter with [2,6-iPr2C6H3]NCHtol produces the imine adduct [Ti(NMe2)31-[2,6-iPr2C6H3]NCHtol)][B(C6F5)4] (8). The carboamination catalytic activity of complexes 2-7 was investigated and compared to [Ti(NMe2)3(NHMe2)][B(C6F5)4]. Likewise, a proposed mechanism to the active carboamination catalyst stemming from [Ti(NMe2)3(NHMe2)][B(C6F5)4] is described.  相似文献   

14.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

15.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

16.
Equilibrium constants for the fluorinated species HF, F-, HF-2 and H2F2 in formic acid and in a 1M potassium formate solution in formic acid have been studied by 19F NMR. The chemical shifts of these species have been determined from measurements of the shifts for various initial mixtures of differing concentrations of dissolved HF, F- and HF-2. From these values, relative concentrations of HF, F-, and HF-2 and H2F2 in each solution have been calculated through a numerical method. The following constants were obtained: K1 = [H+][F-]/[HF] = 1.1 x 10-5M; KD = [HF][F-]/[HF-2] = 0.5 M; K′1 = [H+][HF-2]/[H2F2]= 1.1 x 10-5 M; K′D = [HF]2/[H2F2]=0.5 M.  相似文献   

17.
FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2, grown by hydrothermal synthesis (P ? 200 MPa, T = 450 or 380°C), crystallize in the monoclinic system with cell dimensions (Å): a = 7.609(5), b = 7.514(6), c = 7.453(4), β = 118.21(3)°; and a = 7.589(6), b = 7.503(8), c = 7.449(5), β = 118.06(3)°, and space group C2m, Z = 2. The structure is related to that of WO3 · 13H2O. It is described in terms of perovskite type layers of Fe3+ octahedra separated by Fe2+ or Mn2+ octahedra, or in terms of shifted hexagonal bronze type layers. Both compounds present a weak ferromagnetism below TN (157 and 156 K, respectively). Mössbauer spectroscopy points to an “idle spin” behavior for FeIIFeIII2F8(H2O)2: only Fe3+ spins order at TN, while the Fe2+ spins remain paramagnetic between 157 and 35 K. Below 35 K, the hyperfine magnetic field at the Fe2+ nuclei is very weak: Hhf = 47 kOe at T = 4.2 K. For MnFe2F8(H2O)2, Mn2+ spin disorder is expected at 4.2 K. This “idle spin” behavior is due to magnetic frustration.  相似文献   

18.
The complexes of the type (ArCH2)2SnO were catalytic-oxygenated by Ag+ and yielded mixed-ligand organotin(IV) complexes (ArCH2)(2-C5H4NCO2)2(ArCOO)tin(IV) (Ar = C6H5 (1), 2-ClC6H4 (2), 2-CNC6H4 (3), 4-ClC6H4 (4), 4-CNC6H4 (5), 2-FC6H4 (6)). The complexes 1-6 are characterized by elemental analyses, IR and NMR (1H, 13C, 119Sn) spectroscopies. Single X-ray crystal structure analysis has been determined, which reveals that the center tin atom of complex 2 is seven-coordinated geometry.  相似文献   

19.
Solid solution investigations in the CsHSO4–CsH2PO4system, carried out as part of an ongoing effort to elucidate the relationship between proton conduction, hydrogen bonding, and phase transitions, yielded the new compound Cs5(HSO4)3(H2PO4)2. Single-crystal X-ray diffraction methods revealed that Cs5(HSO4)3(H2PO4)2crystallizes in space groupC2/c(or possiblyCc), has lattice parametersa=34.066(19) Å,b=7.661(4) Å,c=9.158(6) Å, andβ=90.44(6)°, a unit cell volume of 2389.9(24) Å3, a density of 3.198 Mg m−3, and four formula units in the unit cell. Sixteen non-hydrogen atoms and five hydrogen sites were located in the asymmetric unit, the latter on the basis of geometric considerations rather than from Fourier difference maps. Refinement using anisotropic temperature factors for all non-hydrogen atoms and fixed isotropic temperature factors for all hydrogen atoms yielded residuals based onF2(weighted) andFvalues, respectively, of 0.0767 and 0.0340 for observed reflections [F2>2σ(F2)]. The structure contains layers of (CsH2XO4)2that alternate with layers of (CsHXO4)3, whereXis P or S. The arrangement of Cs, H, andXO4groups within the two types of layers is almost identical to that in the end-member compounds, CsH2PO4and CsHSO4-II, respectively. Although P and S each reside on two of the threeXatom sites in Cs5(HSO4)3(H2PO4)2, the number of protons in the structure appears fixed. In addition, the correlation of S–O and S–OH bond distances with O···O distances, where the latter represents the distance between two hydrogen-bonded oxygen atoms, was determined from a review of literature data.  相似文献   

20.
Although very bulky ligands e.g.(o-MeC6H4)3E or (μ-C10H7)3E (E = P or As) are inert, the normal photochemical or thermal reaction of tertiary phosphines or arsines, L, with [Mn2(CO)10] is CO substitution with the formation of [Mn2(CO)8(L)2] derivatives (I). At elevated temperatures some triarylarsines, R3As, undergo Lambert's reaction with ligand fragmentation to give [Mn2(CO)8(μ-AsR2)2] complexes (II) (R = Ph, p-MeOC6H4, p-FC6H4, or p-CIC6H4) even though, in the absence of [Mn2(CO)10] R3As are stable under the same conditions. Exceptional behaviour is exhibited by (p-Me2NC6H4)3- As which forms a product of type I; by some HN(C6H4)2AsR which give a product of type II as a result of loss of the non-aryl groups R = PhCH2, cyclo-C6H11, or MeO; and by Ph(α-C10H72P which is the only phosphine to form a product of type II, albeit in trace amounts only. The thermal decomposition of a n-butanol solution of [Mn2(CO)8(AsPh3)2] in a sealed tube gives C6H6 and [Mn2(CO)8(α-AsPh2)2], whilst in an open system in the presence of various tertiary phosphines, L, [Mn(H)(CO)3(L)2] are obtained. It is suggested that Lambert's reaction is a thermal fragmentation of [Mn(CO)4(AsR3]* radicals, the first to be recognised. They lose the radical R* which abstracts hydrogen from the solvent. The resulting [Mn(CO)4(AsR2)] moiety dimerises to [Mn2(CO)8-(α-AsR2)2]. the reaction is facilitated by the stability of the departing radical (e.g. PhCH2 or MeO) and, as the crowding about As is relieved, by its size (e.g. Ph, cyclo-C6H11, o-MeC6H4, or α-C10H7). In general, phosphine-substituted radicals [Mn(CO)4(PR)3]* do not undergo this decomposition, probably because the PC bonds are much stronger than AsC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号