首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Zhu P  Zhang X  Wang H  Zhang Y  Bian Y  Jiang J 《Inorganic chemistry》2012,51(10):5651-5659
A series of four mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes (Pc)M[Por(Fc)(2)] [Pc = phthalocyaninate; Por(Fc)(2) = 5,15-di(ferrocenyl)-porphyrinate; M = Eu (1), Y (2), Ho (3), Lu (4)] and their europium(III) triple-decker counterpart (Pc)Eu(Pc)Eu[Por(Fc)(2)] (5), each with two ferrocenyl units at the meso-positions of their porphyrin ligands, have been designed and prepared. The double- and triple-decker complexes 1-5 were characterized by elemental analysis and various spectroscopic methods. The molecular structures of two double-deckers 1 and 4 were also determined by single-crystal X-ray diffraction analysis. Electrochemical studies of these novel sandwich complexes revealed two consecutive ferrocene-based one-electron oxidation waves, suggesting the effective electronic coupling between the two ferrocenyl units. Nevertheless, the separation between the two consecutive ferrocene-based oxidation waves increases from 1 to 4, along with the decrease of rare earth ionic radius, indicating the effect of rare earth size on tuning the coupling between the two ferrocenyl units. Furthermore, the splitting between the two ferrocene-based one-electron oxidations for triple-decker 5 is even smaller than that for 1, showing that the electronic interaction between the two ferrocene centers can also be tuned through changing the linking sandwich framework from double-decker to triple-decker. For further understanding of the electronic coupling between ferrocenyl groups, DFT calculation is carried out to clarify the electronic delocalization and the molecular orbital distribution in these double-decker complexes.  相似文献   

2.
The electronic communication between two redox centres through a Schiff base complex has been investigated in a series of ethylenediimine-bis(1-ferrocenyl-1,3-butanedionate) complexes of Zn(II) 1, Cu(II) 2, Ni(II) 3 and Co(II) 4. Cyclic voltammetry experiments of 1 and 2 exhibit a unique two-electron reversible oxidation wave, whereas in the case of 3 and 4 two and three one-electron oxidation processes are, respectively, observed. These results suggest some electronic interaction between the iron atoms of the ferrocenyl groups. DFT calculations carried out on model complexes show that for all the studied compounds the removal of the first two electrons corresponds to the oxidation processes of the iron centres in the weakly coupled ferrocenyl termini. The electronic communication between the two iron centres increases on going from 1 to 4. Finally, a re-indexation of the bands observed in the UV-Visible spectra has been carried out using TDDFT calculations.  相似文献   

3.
A planar pi-conjugated heteroaromatic molecule 1 has been synthesized and fully characterized; it combines two characteristics, a charge-transfer transition originating from its inherent donor-acceptor nature in its neutral state and an intervalence charge-transfer transition in its 1(2+) mixed-valence state.  相似文献   

4.
The redox potentials of bis(fulvalene)dinickel, 1, and the tetrakis(ferrocenyl)nickel dithiolene complex 2 have been measured in a variety of nonaqueous electrolytes. The difference in E1/2 values of the two successive one-electron oxidations of 1 (i.e., DeltaE1/2 values) increased from a low of 212 mV in anisole/[NBu4]Cl to a high of 850 mV in CH2Cl2-Na[B(C6H3(CF3)2)4], reflecting an increase of over 1010 in the comproportionation constant (Kcomp = [1+]2/[1][12+]). Six reversible one-electron processes are possible for compound 2, the four oxidations arising from the ferrocenyl substituents, and the two reductions arising from the Ni dithiolene moiety. The E1/2 spreads of the four oxidation waves and the two reduction waves are both highly sensitive to medium effects. For both 1 and 2, the largest DeltaE1/2 values for cationic products are found in solvents of low polarity and donor strength containing electrolyte salts having large anions and small cations. Conversely, the smallest DeltaE1/2 values for anionic products are found under these conditions, culminating in the observation of a single two-electron reduction wave for 2/22- in CH2Cl2-Na[B(C6H3(CF3)2)4]. A combination of solvation and ion-pairing effects must be considered, and may be used to advantage, when using DeltaE1/2 values as a measure of electronic interactions between redox centers in compounds containing two or more electron-transfer sites.  相似文献   

5.
The synthesis, optical and electrochemical properties, and X-ray characterization of two thiazole derivatives capped by ferrocenyl groups (5 and 7) and their model compounds with one ferrocenyl, either at 2 or 5 position of the mono- or bis-thiazolyl rings (3, 9, 11, and 14), are presented. Bisferrocenyl thiazole 5 forms the mixed-valence species 5*+ by partial oxidation which, interestingly, shows an intramolecular electron-transfer phenomenon. Moreover, the reported heteroaromatic compounds show selective ion-sensing properties. Thus, ferrocenylthiazoles linked across the 5 position of the heteroaromatic ring are selective chemosensors for Hg2+ and Pb2+ metal ions; 5-ferrocenylthiazole 3 operates through two channels, optical and redox, for Hg2+ and only optical for Pb2+, whereas 1,1'-bis(thiazolyl)ferrocene 14 is only an optical sensor for both metal ions. Moreover, complex 3 behaves as an electrochemically induced switchable chemosensor because of the low metal-ion affinity of the oxidized 3*+ species. On the other hand, ferrocenylthiazole 9, in which the heterocyclic ring and the ferrocene group are linked across the 2 position, is a selective redox sensor for Hg2+ metal ions, and it responds optically, as does bis(thiazolyl)ferrocene 11, to a narrow range of cations (Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+). Finally, bis(ferrocenyl)thiazole 5 is a dual optical and redox sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+, whereas bis(ferrocenyl) compound 7, bearing a bis(thiazole) unit as a bridge, is only a chromogenic sensor for Zn2+, Cd2+, Hg2+, Ni2+, and Pb2+. The experimental data and conclusions about both the electronic and ion-sensing properties are supported by DFT calculations which show, in addition, an unprecedented intramolecular electron-transfer reorganization after the first one-electron oxidation of compound 5.  相似文献   

6.
A complex featuring two triarylamine redox centers bridged by Pt, trans-bis(triethylphosphine)-bis{4-[bis(4-methoxyphenyl)amino]phenylethynyl} platinum(II), has been synthesized as a model system for pi-conjugated Pt-containing polymers. Analysis of the intervalence charge-transfer band displayed by its mixed-valence monocation affords a quantitative assessment of electronic delocalization through the Pt bridge; this is found to be only slightly smaller than that determined for a benzene-bridged analogue. These results are supported by density functional theory calculations, which show that the active orbitals involved in the electron-transfer process in both cases have similar delocalization through the bridging unit.  相似文献   

7.
The large rigid dianion fluoflavinate, C(14)H(8)N(4)(2)(-), consisting of four fused and planar six-membered rings with four nitrogen donor atoms, has been used to link two metal-to-metal bonded and redox-active Mo(2)(n)()(+) units which are each locally bridged by three additional groups, collectively denoted [Mo(2)]. In 1, the [Mo(2)] units are Mo(2)(DAniF)(3) (DAniF = N,N'-di-p-anisylformamidinate), and in 5, they are trans-Mo(2)(DAniF)(2)(O(2)CCH(3)) groups. These [Mo(2)](fluoflavinate)[Mo(2)] compounds show three reversible one-electron oxidation steps, one more than all other [Mo(2)](linker)[Mo(2)] species known to date. The first two redox processes are metal-based, and the third one has been assigned to a ligand oxidation by comparison to that of paddlewheel compound 4 which contains only one dimolybdenum unit with a monoanionic fluoflavinate ligand. Chemical oxidations of 1 produce the singly- and doubly-oxidized species 2 and 3, respectively. All compounds have been characterized by X-ray crystallography and, as appropriate, by various techniques such as NMR, EPR, near-IR, and UV-vis. The fluoflavinate ligand strongly mediates electronic communication between the dimetal units, and the mixed valence species 2 can be described as electronically delocalized. Calculations at the DFT level using a variety of functionals support such an assignment and indicate that a strong transition in the NIR for the singly oxidized species can be assigned to the HOMO-1 to SOMO transition.  相似文献   

8.
A novel D-pi-A system in which tetrathiafulvalene (TTF) and pi-extended TTFs as strong electron donors are covalently connected to a tricarbonyl (eta(6)-arene)chromium complex as the acceptor moiety through a systematically increased conjugated bridge of vinylene units (12a-c, 16a-c) have been synthesized by Wittig-Horner olefination reaction. The electronic spectra as well as the electrochemical data reveal a different behavior of TTF derivatives (12a-c) and of exTTF derivatives (16a-c). Cyclic voltammetry shows the influence of the tricarbonylchromium arene on the oxidation potentials in compounds 12a-c, and no remarkable effect is observed for exTTFs (16a-c). The nonlinear optical properties of 12a-c and 16a-c have been calculated by using the ab initio CPHF/6-31G//B3P86/6-31G model, and the time-dependent density functional theory (TD-DFT) method has been used for the calculation of the electronic transitions. The calculations reveal that an intraligand charge-transfer transition (ILCT) and the metal to ligand charge-transfer transition (MLCT) are responsible for the nonlinear response. In addition, the large angles formed by the ground-state dipole moment and the vectorial hyperpolarizability are responsible for the mubeta values determined experimentally by the EFISH technique.  相似文献   

9.
A novel class of luminescent dialkynylgold(III) complexes containing various phenylpyridine and phenylisoquinoline-type bidentate ligands has been successfully synthesized and characterized. The structures of some of them have also been determined by X-ray crystallography. Electrochemical studies demonstrate the presence of a ligand-centered reduction originating from the cyclometalating C^N ligand, whereas the first oxidation wave is associated with an alkynyl ligand-centered oxidation. The electronic absorption and photoluminescence properties of the complexes have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the metal-perturbed π-π* intraligand (IL) transition of the cyclometalating C^N ligand, with mixing of charge-transfer character from the aryl ring to the pyridine or isoquinoline moieties of the cyclometalating C^N ligand. The low-energy emission bands of the complexes in fluid solution at room temperature are ascribed to originate from the metal-perturbed π-π* IL transition of the cyclometalatng C^N ligand. For complex 4 that contains an electron-rich amino substituent on the alkynyl ligand, a structureless emission band, instead of one with vibronic structures as in the other complexes, was observed, which was assigned as being derived from an excited state of a [π(C≡CC(6) H(4) NH(2) )→π*(C^N)] ligand-to-ligand charge-transfer (LLCT) transition.  相似文献   

10.
A family of rigid ferrocenyl-terminated redox stars has been synthesized-by Negishi coupling, including hexa(ferrocenethynyl)benzene complexes, a dodecaferrocenyl star, and stars with extended rigid tethers-and fully characterized. Cyclic voltammetry (CV) studies of the parent complex hexa(ferrocenylethynyl)benzene, 1, show a single wave for the six-electron oxidation of 1 using Nn-Bu(4)PF(6) as the supporting electrolyte on a Pt anode in CH(2)Cl(2), whereas three distinct two-electron reversible CV waves are observed using Nn-Bu(4)BAr(F)(4) (Ar(F) = 3,5-C(6)H(3)-(CF(3))(2,)). The CV of 1,3,5-tris(ferrocenylethynyl)benzene, 11, also shows only one wave for the three-electron transfer with Nn-Bu(4)PF(6) and three one-electron waves using Nn-Bu(4)BAr(F)(4). This confirms the lack of electronic communication between the ferrocenyl groups and a significant electrostatic effect among the oxidized ferrocenyl groups. This effect is not significant between para-ferrocenyl groups in 1,4-bis(ferrocenylethynyl)benzene for which only a single wave is observed even with Nn-Bu(4)BAr(F)(4) as the supporting electrolyte. The para-ferrocenyl substituents are quite independent, which explains that two para-ferrocenyl groups are oxidized at about the same potential in a single CV wave of 1. With the additional steric bulk introduced with a methyl substituent on the ferrocenyl group, however, even the para-methylferrocenyl groups are submitted to a small electrostatic effect splitting the six-electron transfer into six single-electron waves, probably because of the overall steroelectronic constraints. Contrary to 11, 1,3-bis(ferrocenylethynyl)benzene and related complexes with a third, different substituent in the remaining meta position different from a ferrocenylethynyl only show a single two-electron wave using Nn-Bu(4)BAr(F)(4), which is attributed to the transo?d conformation of the ferricinium groups minimizing the electrostatic effect. This shows that, in 11, it is the steric frustration that is responsible for the electrostatic effect, and the same occurs in 1. In several cases, ΔE(p) is much larger than the expected 60 mV value, characterizing a quasi-reversible (i.e., relatively slow) redox process. It is suggested that this slower electron transfer be attributed to conformational rearrangement of the ferrocenyl groups toward the transo?d position in the course of electron transfer. Thus both the thermodynamic and kinetic aspects of the electrostatic factor (isolated from the electronic factor), including the frustration effect, are characterized. The distinction between the electronic communication and through-space electrostatic effect was made possible in all of these complexes in which the absence of wave splitting using a strongly ion-pairing electrolyte shows the absence of significant electronic communication, and was confirmed by the new frustration phenomenon.  相似文献   

11.
We have synthesized two novel phosphoramidites with a ferrocenyl moiety at the 2'-ribose position linked through a butoxy linker. Using automated DNA/RNA synthesis techniques, oligonucleotides containing ferrocene at various positions were prepared and characterized by HPLC, MALDI-TOF mass spectrometry, and electrochemistry. Thermal stability studies of the ferrocene-modified DNA duplexes revealed that introduction of one or two ferrocenyl complexes does not result in an observed change of the T(m) values of the corresponding DNA duplexes when compared to the nonmodified hybrids. These data indicate that the introduction of a ferrocenyl group at the 2'-position of the ribose ring containing either a purine or pyrimidine base has no effect on the stability of the modified DNA. The electrochemical behavior of the ferrocene-containing DNA was examined by cyclic voltammetry. The modified 2'-ferrocene-oligonucleotides are electrochemically active and can be used as signaling probes for the electronic detection of nucleic acids on bioelectronic sensors.  相似文献   

12.
The reaction of M2(O2CBu(t))4 (M = Mo, W) with a dicarboxylic acid in toluene yields compounds of general formula [M2]-O2C-X-CO2-[M2] ([M2] = M2(O2CBu(t))3; X = conjugated spacer). The M2 units are electronically coupled via interactions between the M2 delta and dicarboxylate pi* orbitals, and the magnitude of this coupling is revealed by electronic structure calculations and spectroscopic data. These compounds show intense metal to ligand charge transfer (MLCT) absorptions in the visible region of the electronic spectrum that are temperature and solvent dependent. Evidence of electronic coupling is seen in their cyclic voltammograms, which show two successive one-electron oxidations. The extent of electronic coupling in the mixed valence radical cations [M2]-O2C-X-CO2-[M2]+, generated by oxidation with one equivalent of AgPF6 or FeCp2PF6, is evaluated by EPR and UV-vis-NIR spectroscopic data, and delocalized behavior is observed in compounds with W2 units separated by up to 13.6 angstroms. The simplicity of the frontier M2 orbital interactions with the bridge pi orbitals provides a convenient system with which to study electron transfer in mixed valence systems, as compared to the extensively studied, but more complicated, dinuclear t(2g)6/t(2g)5 mixed valence compounds. Oligomeric and polymeric compounds incorporating M2 units have also been synthesized, having general formula [M2(O2CR)2(O2C-Thio-CO2)]n (Thio = n-hexyl substituted ter- and quinque-thiophenes). They can be deposited as thin films by spin coating, and show photoluminescence and electroluminescence. These metallo-polythiophenes show potential for application in electronic materials. (  相似文献   

13.
A practical approach to ferrocenyl naphthaquinone derivatives involving thermal rearrangement of variously substituted 4-aryl-4-hydroxycyclobutenones was described. The reaction of 3-ferrocenyl-4-isopropoxy-3-cyclobutene-1,2-dione with different aryl lithiums gave the corresponding 4-aryl-4-hydroxycyclobutenones, which were heated in p-xylene at reflux open to the air to yield ferrocenyl naphthaquinones. The redox chemistry of the ferrocenyl naphthaquinones was studied by electrochemical and in situ spectroelectrochemical techniques in CH2Cl2 solution and in CH3CN solution with water, weak and strong acidic additives. Ferrocenyl naphthaquinones displayed reversible two reduction processes involving semiquinone radical anion (Fc-snq), dianion (Fc-nq2−) species and a one-electron oxidation process based on the ferrocenium/ferrocene (Fc+-nq/Fc-nq) couple in CH2Cl2. The redox reaction mechanism of the ferrocenyl naphthaquinones in the presence of the additives proceeded via hydrogen bonding or proton-coupled electron transfer. Effects of the substituents on the reduction potentials and intramolecular charge-transfer bands of ferrocenyl naphthaquinones were also discussed.  相似文献   

14.
The 60-electron tetrahedral clusters W2Ir2(μ-L)(CO)85-C5H4Me)2 [L=dppe (2), dppf (3)] have been prepared from reaction between W2Ir2(CO)105-C5H4Me)2 (1) and the corresponding diphosphine in 52 and 66% yields, respectively. A structural study of 2 reveals that three edges of a WIr2 face are spanned by bridging carbonyls, that the iridium-ligated diphosphine coordinates diaxially and that the tungsten-bound methylcyclopentadienyls coordinate axially and apically with respect to the plane of bridging carbonyls. A structural study of 3 reveals that the dppf ligand bridges an Ir---Ir bond which is also spanned by a bridging carbonyl; tungsten-ligated methylcyclopentadienyl ligands and terminal carbonyls result in electronic asymmetry (17e and 19e iridium atoms) in the electron-precise cluster. Both clusters show two reversible one-electron oxidation processes and an irreversible two-electron reduction; the dppf-containing cluster 3 has a further, irreversible, one-electron oxidation process. UV–vis-NIR spectroelectrochemical studies of the 2→2+→22+ progression reveal the appearance of a low-energy transition on oxidation to 2+ which persists on further oxidation to 22+.  相似文献   

15.
16.
Phosphorus-containing poly(N-arylaniline)s and related polymer model compounds have been prepared. The spectroscopic and electronic properties of the materials were investigated via UV-vis-NIR spectroscopy and cyclic voltammetry. PPPP-PANI copolymers containing p-phenylene diamine units in the polymer backbone have electronic and spectroscopic properties characteristic of aromatic substituted p-phenylene diamines. Copolymers containing -(-C(6)H(4)-P-C(6)H(4)-P-C(6)H(4)-)- linkages between nitrogen centers show evidence for weak electronic delocalization along the polymer chain. The electrochemical and spectroscopic properties support strong electronic delocalization in copolymers containing -(-P-C(6)H(4)-N-C(6)H(4)-)- repeat units. The presence of a single diphenylphosphine bridge between nitrogen centers provides an efficient mode of electronic delocalization between nitrogen centers. PPPP oxide-PANI copolymers and related polymer model compounds were also prepared and investigated. The resemblance of PPPP oxide-PANI copolymers to isolated p-phenylene diamines or triarylamines suggests electronic isolation of the amine fragments in the polymer. The conversion of phosphorus(III) phosphines to phosphorus(V) phosphine oxides inhibits electronic delocalization through phosphorus, further supporting delocalization of the lone pair of electrons on phosphorus in PPPP-PANI copolymers. PPPP-PANI copolymers are a new type of pi-conjugated polymer with low oxidation potentials and electronic delocalization through phosphorus along the polymer chain.  相似文献   

17.
The dinuclear phenolato-bridged complex [(mL)Mn(II)Mn(II)(mL)](ClO(4))(2) (1(ClO(4))(2)) has been obtained with the new [N(4)O] pentadentate ligand mL(-) (mLH=N,N'-bis-(2-pyridylmethyl)-N-(2-hydroxybenzyl)-N'-methyl-ethane-1,2-diamine) and has been characterised by X-ray crystallography. X- and Q-band EPR spectra were recorded and their variation with temperature was examined. All spectra exhibit features extending over 0-800 mT at the X band and over 100-1450 mT at the Q band, features that are usually observed for dinuclear Mn(II) complexes. Cyclic voltammetry of 1 exhibits two irreversible oxidation waves at E(1)(p)=0.89 V and E(2)(p)=1.02 V, accompanied on the reverse scan by an ill-defined cathodic wave at E(1')(p)=0.56 V (all measured versus the saturated calomel electrode (SCE)). Upon chemical oxidation with tBuOOH (10 equiv) at 20 degrees C, 1 is transformed into the mono-mu-oxo species [(mL)Mn(III)-(mu-O)-Mn(III)(mL)](2+) (2), which eventually partially evolves into the di-mu-oxo species [(mL)Mn(III)-(mu-O)(2)-Mn(IV)(mL)](n+) (3) in which one of the aromatic rings of the ligand is decoordinated. The UV/Vis spectrum of 2 displays a large absorption band at 507 nm, which is attributed to a phenolate-->Mn(III) charge-transfer transition. The cyclovoltammogram of 2 exhibits two reversible oxidation waves, at 0.65 and 1.16 V versus the SCE, corresponding to the Mn(III)Mn(III)/Mn(III)Mn(IV) and Mn(III)Mn(IV)/Mn(IV)Mn(IV) oxidation processes, respectively. The one-electron electrochemical oxidation of 2 leads to the mono-mu-oxo mixed-valent species [(mL)Mn(III)-(mu-O)-Mn(IV)(mL)](3+) (2 ox). The UV/Vis spectrum of 2 ox exhibits one large band at 643 nm, which is attributed to the phenolate-->Mn(IV) charge-transfer transition. 2 ox can also be obtained by the direct electrochemical oxidation of 1 in the presence of an external base. The 2 ox and 3 species exhibit a 16-line EPR signal with first peak to last trough widths of 125 and 111 mT, respectively. Both spectra have been simulated by using colinear rhombic Mn-hyperfine tensors. Mechanisms for the chemical formation of 2 and the electrochemical oxidation of 1 into 2 ox are proposed.  相似文献   

18.
Lu M  Kang J  Wang D  Peng Z 《Inorganic chemistry》2005,44(22):7711-7713
The first chiral molecular hybrids based on covalently linked polyoxometalate clusters and enantiopure 1,1'-binaphthyl units have been prepared. Their structures have been confirmed by (1)H NMR, FTIR, and ESI-MS measurements. Such hybrids show moderate chiroptical behavior in solutions, and Cotton effects are observed up to 450 nm, indicating chiral extension from the binaphthyl core to the cluster-containing pi-conjugated arms.  相似文献   

19.
A new class of luminescent alkynylplatinum(II) complexes of tridentate bis(N-alkylbenzimidazol-2'-yl)pyridines (bzimpy), [Pt(R,R'-bzimpy)(C[triple chemical bond]C-R')]X (X=PF(6), OTf), and one of their chloro precursor complexes, [Pt(R,R'-bzimpy)Cl]PF(6), have been synthesized and characterized; one of the alkynyl complexes has also been structurally characterized by X-ray crystallography. Electrochemical studies showed that the oxidation wave is alkynyl ligand-based in nature with some mixing of the metal center-based contribution, whereas the two quasi-reversible reduction couples are mainly bzimpy-based reductions. The electronic absorption and luminescence properties of the complexes have also been investigated. In solution, the high-energy and intense absorption bands are assigned as the pi-pi* intraligand (IL) transitions of the bzimpy and alkynyl ligands, whereas the low-energy and moderately intense absorptions are assigned to an admixture of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(R,R'-bzimpy)) and ligand-to-ligand charge-transfer (LLCT) (pi(C[triple chemical bond]C-R')-->pi*(R,R'-bzimpy)) transitions. Upon variation of the electronic effects of the arylalkynyl ligands, vibronic-structured or structureless emission bands, originating from triplet metal-perturbed intraligand (IL) or an admixture of triplet metal-to-ligand charge-transfer (MLCT) and ligand-to-ligand charge-transfer (LLCT) excited states respectively, were observed in solution. Interestingly, two of the complexes showed a dual luminescence that was sensitive to the polarity of the solvents. Upon cooling from 298 K to 155 K, drastic color, UV/Vis, and luminescence changes were observed in a butyronitrile solution of 1, and were ascribed to the formation of aggregate species through PtPt and pi-pi stacking interactions. DFT and time-dependent DFT (TD-DFT) calculations have been performed to verify and elucidate the results of the electrochemical and photophysical properties.  相似文献   

20.
A systematically varied series of tetrahedral clusters involving ligand and core metal variation has been examined using crystallography, Raman spectroscopy, cyclic voltammetry, UV-vis-NIR and IR spectroelectrochemistry, and approximate density functional theory, to assess cluster rearrangement to accommodate steric crowding, the utility of metal-metal stretching vibrations in mixed-metal cluster characterization, and the possibility of tuning cluster electronic structure by systematic modification of composition, and to identify cluster species resultant upon electrochemical oxidation or reduction. The 60-electron tetrahedral clusters MIr(3)(CO)(11-x)(PMe(3))(x)(eta(5)-Cp) [M = Mo, x = 0, Cp = C(5)H(4)Me (5), C(5)HMe(4) (6), C(5)Me(5) (7); M = W, Cp = C(5)H(4)Me, x = 1 (13), x = 2 (14)] and M(2)Ir(2)(CO)(10-x)(PMe(3))(x)(eta(5)-Cp) [M = Mo, x = 0, Cp = C(5)H(4)Me (8), C(5)HMe(4) (9), C(5)Me(5) (10); M = W, Cp = C(5)H(4)Me, x = 1 (15), x = 2 (16)] have been prepared. Structural studies of 7, 10, and 13 have been undertaken; these clusters are among the most sterically encumbered, compensating by core bond lengthening and unsymmetrical carbonyl dispositions (semi-bridging, semi-face-capping). Raman spectra for 5, 8, WIr(3)(CO)(11)(eta(5)-C(5)H(4)Me) (11), and W(2)Ir(2)(CO)(10)(eta(5)-C(5)H(4)Me)(2) (12), together with the spectrum of Ir(4)(CO)(12), have been obtained, the first Raman spectra for mixed-metal clusters. Minimal mode-mixing permits correlation between A(1) frequencies and cluster core bond strength, frequencies for the A(1) breathing mode decreasing on progressive group 6 metal incorporation, and consistent with the trend in metal-metal distances [Ir-Ir < M-Ir < M-M]. Cyclic voltammetric scans for 5-15, MoIr(3)(CO)(11)(eta(5)-C(5)H(5)) (1), and Mo(2)Ir(2)(CO)(10)(eta(5)-C(5)H(5))(2) (3) have been collected. The [MIr(3)] clusters show irreversible one-electron reduction at potentials which become negative on cyclopentadienyl alkyl introduction, replacement of molybdenum by tungsten, and replacement of carbonyl by phosphine. These clusters show two irreversible one-electron oxidation processes, the easier of which tracks with the above structural modifications; a third irreversible oxidation process is accessible for the bis-phosphine cluster 14. The [M(2)Ir(2)] clusters show irreversible two-electron reduction processes; the tungsten-containing clusters and phosphine-containing clusters are again more difficult to reduce than their molybdenum-containing or carbonyl-containing analogues. These clusters show two one-electron oxidation processes, the easier of which is reversible/quasi-reversible, and the more difficult of which is irreversible; the former occur at potentials which increase on cyclopentadienyl alkyl removal, replacement of tungsten by molybdenum, and replacement of phosphine by carbonyl. The reversible one-electron oxidation of 12 has been probed by UV-vis-NIR and IR spectroelectrochemistry. The former reveals that 12(+) has a low-energy band at 8000 cm(-1), a spectrally transparent region for 12, and the latter reveals that 12(+) exists in solution with an all-terminal carbonyl geometry, in contrast to 12 for which an isomer with bridging carbonyls is apparent in solution. Approximate density functional calculations (including ZORA scalar relativistic corrections) have been undertaken on the various charge states of W(2)Ir(2)(CO)(10)(eta(5)-C(5)H(5))(2) (4). The calculations suggest that two-electron reduction is accompanied by W-W cleavage, whereas one-electron oxidation proceeds with retention of the tetrahedral core geometry. The calculations also suggest that the low-energy NIR band of 12(+) arises from a sigma(W-W) --> sigma*(W-W) transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号