首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
SiO2载体表面原位合成MCM-41的结构特征   总被引:1,自引:0,他引:1       下载免费PDF全文
以溶液硅源和表面硅源两种合成路线在SiO2颗粒表面进行了MCM-41的原位合成,结果发现以两种方式均可得到MCM-41的有序结构。溶液硅源原位合成MCM-41的长程结构较好,两种硅源原位合成的MCM-41均能够在脱除模板剂过程中保持其长程有序结构。表面硅源原位合成MCM-41的孔径分布较窄,最可几孔径为3.81nm。本文还考察了OH/CTABr及SiO2/OH比对表面硅源原位合成MCM-41长程结构特征的影响。  相似文献   

2.
合成了钌(II)配合物cis-[Ru(HL)(Hdcbpy)(NCS)2]•[N(C4H9)4](HL=2-(9-乙基-9H-3-咔唑基)-1H-咪唑[4,5-f] [1,10]邻菲啰啉, H2dcbpy=4,4'-二羧酸-2,2'-联吡啶). 采用元素分析、核磁共振氢谱、红外光谱、紫外-可见吸收光谱、质谱(MS)对配合物进行了表征. 通过紫外-可见吸收光谱和稳态荧光光谱, 研究了该配合物的基态和激发态酸碱性质. 结果表明该配合物在基态时能发生5步质子化/去质子化反应, 表现出基于光致发光强度和激发态能量转移途径的质子化/去质子化诱导的分子开关性质.  相似文献   

3.
合成了一个基于吡嗪酰腙席夫碱配体H2L的单核Co(Ⅱ)配合物[NHEt3][Co(HL)2]·3H2O(1),并通过红外光谱、热重分析、X射线单晶衍射分析及变温磁化率测定等对配合物进行了表征。X射线单晶衍射分析表明,该配合物包含1个Co(Ⅱ)、2个去质子化的HL-配体以及未参与配位的3个水分子和1个质子化三乙胺,中心Co(Ⅱ)与N2O4六配位形成扭曲的八面体构型。配合物1以及去除水分子后的1的磁性测试表明二者均具有缓慢的高低自旋转换,其不同之处归属为氢键对磁性的影响。  相似文献   

4.
使用RD—1型热导式自动量热计测定了四个α-氨基酸酸根的质子化热及其与Cu(Ⅱ(—2.2'-联吡啶生成配合物的生成热,用量热法从实验上验证了三元配合物的生成热与配位体的质子之间也存在着如下的直线焓关系式:ΔHM=Q-βΔHL,式中ΔH_M为配合物的生成热,ΔHL为配位体的质子化热,Q与β为常数,还计算了配合物的生成焓与配位体的质子化熵,结果表明在三元配合物的生成焓与配位体的质子化熵之间也存在有线性关系,但由于脯氨酸分子中的五元环的影响,相关系数较差。  相似文献   

5.
L-苏糖酸与金属离子的配位性能   总被引:9,自引:0,他引:9  
本文在298K、I=0.1 mol·L-1 KNO3条件下测定了L-苏糖酸的质子化常数及其与钙(Ⅱ)、镉(Ⅱ)、锌(Ⅱ)、钴(Ⅱ)、铜(Ⅱ)二元配合物的生成常数。L-苏糖酸的质子化常数与葡萄糖酸的质子化常数一致,pKa为3.56。其与金属离子的配位方式也与葡萄糖酸一致,但其二元配合物的生成常数明显比葡萄糖酸大。L-苏糖酸与不同金属离子作用的方式不同,与钙(Ⅱ)、镉(Ⅱ)、锌(Ⅱ)、钴(Ⅱ)配位时不解离出醇羟基质子,而与铜(Ⅱ)配位时则  相似文献   

6.
钌基催化剂因其在低温低压下具有比常规的铁基催化剂更具活性的特点成为合成氨催化剂的理想选择.我们研究了CeO2载体表面碱性对Ru基合成氨催化剂的影响.通过调节KOH沉淀剂的量来制备具有不同碱性位点的CeO2载体(pH=10/11/12),证明了催化剂适当碱性位点密度提高了合成氨催化活性.催化性能测试结果表明,1.25% Ru/CeO2-11催化剂在3.8 MPa,450℃,H2/N2=3(60 mL·min-1)下表现出优异的氨合成活性(7040 μmol·g-1·h-1).CeO2-11的碱性位点增强了载体的电子给予能力,这有利于电子向活性金属Ru转移,从而促进了N2的活化.碱金属和碱土金属的引入提高了活性金属Ru的还原能力.4% Cs-1.25% Ru/CeO2-11(12 000 μmol·g-1·h-1)催化剂具有更多的氧空位,这增加了Ru周围的电子密度并促进了N≡N的裂解.通过XRD,BET,SEM,CO2-TPD,H2-TPR和XPS分析了不同碱性CeO2载体对合成氨催化反应的影响.  相似文献   

7.
采用增强采样分子动力学模拟研究了一轮烷型分子梭协助K+跨膜转运的机制, 该轮烷由两亲性的轴和套在轴上的大冠醚环及连接在大冠醚环上的小冠醚环构成, 轴上有3个带正电的结合位点. 通过计算穿梭过程的自由能变化, 探索了溶剂(氯仿、 乙腈、 水、 氯仿-乙腈)以及中间结合位点对该轮烷穿梭运动的影响, 并分析了中间位点在其携带K+穿越细胞膜(采用水-氯仿-水模拟)过程中的重要作用. 结果表明, 改变溶剂不会改变轮烷(不携带K+)的运动模式, 但随着溶剂极性的增加穿梭所需克服的自由能能垒显著降低; 在氯仿-乙腈混合溶剂中, 中间结合位点的质子化状态, 不影响轮烷(不携带K+)的穿梭能垒; 然而在模拟细胞膜的环境中, 该结合位点的质子化与去质子化相比大幅降低了穿梭的能垒, 促进了K+的跨膜转运, 表明中间位点的质子化对于离子转运至关重要, 进一步分析表明轮烷中大环穿梭和小环摆动的协同作用, 也是加速离子跨膜转运的另一关键因素.  相似文献   

8.
钴(Ⅱ)-5-取代邻菲罗啉-α-氨基酸三元配合物的稳定性研究   总被引:5,自引:1,他引:5  
本文在25.0±0.1℃,I=0.1mol·dm-3KNO3存在下,采用pH法测得了5-取代邻菲罗啉的质子化常数以及钴(Ⅱ)与5-取代邻菲罗啉、α-氨基酸的二元、三元配合物的稳定常数。结果表明三元配合物的稳定性与5-取代邻菲罗啉的质子化常数、取代基常数均存在直线自由能关系。并用三元配合物稳定性的表征值logKM、△logK,讨论了三元配合物的稳定性,发现钴(Ⅱ)与配体5-取代邻菲罗啉之间也存在着d-p反馈π键。该π健的强度对三元配合物稳定性有着显著影响。  相似文献   

9.
刘畅  于歌  黄翠英  王长生 《化学学报》2015,73(4):357-365
优化得到了碱基腺嘌呤、胸腺嘧啶、尿嘧啶、鸟嘌呤及胞嘧啶与甘氨酸二肽分子形成的28个氢键复合物的稳定结构并计算了结合能, 探讨了五种碱基与甘氨酸二肽分子间氢键作用的最佳位点. 本文研究发现: 每种碱基均可以通过不同位点与二肽分子形成氢键复合物, 腺嘌呤、胸腺嘧啶、尿嘧啶、鸟嘌呤及胞嘧啶分别最倾向使用A3、T1、U1、G3及C1位点与甘氨酸二肽分子形成氢键复合物; 碱基分子某位点的质子化反应焓变越负所形成的氢键复合物越稳定, 去质子化反应焓变越小所形成的氢键复合物越稳定; 由氢键复合物的结合能计算得到的稳定性次序与由碱基分子质子化和去质子化反应焓变推得的稳定性次序一致.  相似文献   

10.
用ESI/MS-MS方法研究了质子化多肽RRMKWKK 在低能气相碰撞诱导解离(CID)条件下的碰撞能和解离路径. 研究结果表明, [M+2H]2+和[M+3H]3+的CID断裂曲线和断裂位点相似. 但质子化多肽所含正电荷个数不同时, 产生同一碎片离子的初始碰撞能不同. 碱性氨基酸残基精氨酸(Arg)的支链是多肽RRMKWKK质子化时质子优先结合的位点, 导致含有Arg的多肽在气相碰撞诱导解离条件下解离时需要较高的碰撞能. 在用质谱方法研究含精氨酸残基的多肽时应选择质子个数比多肽中Arg个数多1个的母体离子. 质子化多肽RRMKWKK的结构AM1计算结果表明, 质子化RRMKWKK中两个相邻精氨酸在空间上相互分离, 库伦斥力的影响不足以改变质子的优先结合位点.  相似文献   

11.
12.
A method based on a lattice summation technique for treating long-range electrostatic interactions in hybrid quantum mechanics/molecular mechanics simulations is presented in this article. The quantum subsystem is studied at the semiempirical level, whereas the solvent is described by a two-body potential of molecular mechanics. Molecular dynamics simulations of a (quantum) chloride ion in (classical) water have been performed to test this technique. It is observed that the application of the lattice summations to solvent-solvent interactions as well as on solute-solvent ones has a significant effect on solvation energy and diffusion coefficient. Moreover, two schemes for the computation of the long-range contribution to the electrostatic interaction energy are investigated. The first one replaces the exact charge distribution of the quantum solute by a Mulliken charge distribution. The long-range electrostatic interactions are then calculated for this charge distribution that interacts with the solvent molecule charges. The second one is more accurate and involves a modified Fock operator containing long-range electron-charge interactions. It is shown here that both schemes lead to similar results, the method using Mulliken charges for the evaluation of long-range interactions being, however, much more computationally efficient.  相似文献   

13.
A series of low molecular weight organic gelator (LMOG) gel systems sensitive to alkaline/acidic stimuli was established by employing amino acid derivatives of cholesterol as "latent" gelators, which are cholesteryl glycinate (1), cholesteryl L-alaninate, cholesteryl D-alaninate, cholesteryl L-phenyl alaninate, and cholesteryl D-phenyl alaninate. The hydrochloric salts are denoted as 2, 3, 4, 5, and 6, respectively. For the 18 solvents tested, one proved to be a weak gelator and gels only two of the solvents. Its gelation ability, however, was greatly improved by bubbling HCl gas, which was produced by reaction of concentrated sulfuric acid with NaCl, through its solution owing to protonation of its amino group. It was demonstrated that the protonated form of it gelled 14 of the solvents tested. Further investigation revealed that the gels changed into solution with addition of any of the amines, including triethylamine (TEA), diethylamine, ethylenediamine, and NH3. The phase transition could be reversed by further introduction of the acidic gas. SEM measurements showed that 1 self-assembled into different supramolecular structures in different gels. Salt effect studies proved that electrostatic interaction is one of the driving forces for formation of the gels.  相似文献   

14.
有机酸取代基和溶剂效应的静电模型   总被引:3,自引:0,他引:3  
本文根据气相实验结果和以往的静电理论, 建立了一个描述有机酸电离取代基和溶剂效应的静电模型。该模型不仅满足气相边界条件, 而且其参数B具有较明确的物理意义, 即与酸官能团的溶剂化半径以及取代基与溶剂分子之间特殊相互作用有关, 因而是描述溶质-溶剂相互作用的重要参数。  相似文献   

15.
The ground‐state equilibrium geometries of benzothiazole, benzoxazole, and benzimidazole were optimized at the density functional theory (DFT)/6‐31G** level of theory. Proton affinities on each of the possible sites in the studied series of compounds have been calculated at the DFT/6‐31G**/6‐311++G** level. The results indicate clearly that N‐site protonation is strongly favored over X‐site protonation (X = NH, O, S) for the series studied. Correlation of the computed proton affinities to the energy (EHOMO) of the highest occupied MO in the gas phase and in solution has been explored and discussed. A comprehensive investigation of the effect of solvent on the process of protonation of the studied compounds has been performed. Different dielectric continuum models (i.e., Onsager, PCM, and IPCM) have been tested; their performance and range of applicability are reported and discussed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

16.
A series of substituted 3-aroyldithiocarbazates has been synthesized and studied. The corresponding acid dissociation constants have been determined potentiometrically. Semiempirical PM3 molecular orbital calculations suggest the existence of several tautomeric forms of the compounds. Geometrical parameters, proton affinities, and static reactivity indices have been examined. Structural properties and protonation sites are well described by calculations. The strong correlations between the pK a values and the Hammett constants as well as the N(3) calculated proton affinities indicate that the N(3) atom is the most probable protonation site. The thermodynamics of the protonation process are mainly controlled by HOMO-LUMO rather than electrostatic interactions. According to PM3 results, 3-aroyldithiocarbazic acid should be quite stable in the gas phase, while a mechanism for its decomposition in solution is proposed.  相似文献   

17.
铂配合物与DNA碱基对间相互作用的理论研究   总被引:1,自引:0,他引:1  
用量子化学方法研究一系列Pt(II)配合物作用于嘌呤碱基N7位点后对Watson-Crick碱基对AT、GC的影响. 计算结果显示铂配体与碱基对AT、GC的作用以静电作用为主,同时极化作用也是影响GC碱基对的重要因素. 静电作用极大地增强了铂化嘌呤碱基与嘧啶碱基间的相互作用,而嘌呤碱基与嘧啶碱基间作用与未铂化碱基对作用相近. Pd(II) 和 Ni(II)的相关研究得到类似的结果. 碱基对间氢键作用“二阶微扰能”分析结果与氢键强弱变化一致.  相似文献   

18.
The electrospray ionization (ESI) charge state distribution of proteins is highly sensitive to the protein structure in solution. Unfolded conformations generally form higher charge states than tightly folded structures. The current study employs a minimalist molecular dynamics model for simulating the final stages of the ESI process in order to gain insights into the physical reasons underlying this empirical relationship. The protein is described as a string of 27 beads ("residues"), 9 of which are negatively charged and represent possible protonation sites. The unfolded state of this bead string is a random coil, whereas the native conformation adopts a compact fold. The ESI process is simulated by placing the protein inside a solvent droplet with a 2.5 nm radius consisting of 1600 Lennard-Jones particles. In addition, the droplet contains 14 protons which are modeled as highly mobile point charges. Disintegration of the droplet rapidly releases the protein into the gas phase, resulting in average charge states of 4.8+ and 7.4+ for the folded and unfolded conformation, respectively. The protonation probabilities of individual residues in the folded state reveal a characteristic pattern, with values ranging from 0.2 to 0.8. In contrast, the protonation probabilities of the unfolded protein are more uniform and cover the range from 0.8 to 1.0. The origin of these differences can be traced back to a combination of steric and electrostatic effects. Residues exhibiting a small accessible surface area are less likely to capture a proton, an effect that is exacerbated by partial electrostatic shielding from nearby positive residues. Conversely, sites that are sterically exposed are associated with electrostatic funnels that greatly increase the likelihood of protonation. Unfolding enhances the steric and electrostatic exposure of protonation sites, thereby causing the protein to capture a greater number of protons during the droplet disintegration process.  相似文献   

19.
Solvent effects on the rate of the Claisen rearrangement of chorismate to prephenate have been examined in water and methanol. The preequilibrium free-energy differences between diaxial and diequatorial conformers of chorismate, which had previously been implicated as the sole basis for the observed 100-fold rate increase in water over methanol, have been reframed using the near attack conformation (NAC) concept of Bruice and co-workers. Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82%, 57%, and 1% of chorismate conformers were found to be NAC structures (NACs) in water, methanol, and the gas phase, respectively. As a consequence, the conversion of non-NACs to NACs provides no free-energy contributions to the overall relative reaction rates in water versus methanol. Free-energy perturbation calculations yielded differences in free energies of activation for the two polar protic solvents and the gas phase. The rate enhancement in water over the gas phase arises from preferential hydration of the transition state (TS) relative to the reactants via increased hydrogen bonding and long-range electrostatic interactions, which accompany bringing the two negatively charged carboxylates into closer proximity. More specifically, there is an increase of 1.3 and 0.6 hydrogen bonds to the carboxylate groups and the ether oxygen, respectively, in going from the reactant to the TS in water. In methanol, the corresponding changes in hydrogen bonding with first shell solvent molecules are small; the rate enhancement arises primarily from the enhanced long-range interactions with solvent molecules. Thus, the reaction occurs faster in water than in methanol due to greater stabilization of the TS in water by specific interactions with first shell solvent molecules.  相似文献   

20.
The protonation of ethene by three different acid sites of theta-1 zeolite was theoretically studied to analyze the extent and relevance of the following aspects of heterogeneous catalysis: the local geometry of the Br?nsted acid site in a particular zeolite, the size of the cluster used to model the catalyst, the degree of geometry relaxation around the active site, and the effects related to medium- and long-range interactions between the reaction site and its environment. It has been found that while the reaction energy is very sensitive to the local geometry of the site, the activation energy is mainly affected by the methodology used and by electrostatic effects on account of the carbocationic nature of the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号