首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
The organoaluminium and -gallium hydroxylamides (Me2GaONMe2)2, (tBu2AlONMe2)2, (tBu2GaONMe2)2 and (Me2AlONiPr2)2 have been prepared by the reaction of the hydroxylamines Me2NOH and iPr2NOH with the trialkylmetal compounds trimethylgallium, tri-tbutylaluminium and tri-tbutylgallium, respectively. All compounds have been characterised by NMR spectroscopy (1H, 13C, 15N, 17O and 27Al), by mass spectrometry and elemental analyses. The crystal structures of the four compounds have been determined, showing that they all form dimers but with different modes of aggregation: (Me2GaONMe2)2 has a Ga2O2N2 six-membered ring, (tBu2AlONMe2)2 and (Me2AlONiPr2)2 have Al2O2 four-membered rings, (tBu2GaONMe2)2 forms a Ga2O2N five-membered ring.  相似文献   

2.
Jimtaisong A  Luck RL 《Inorganic chemistry》2006,45(25):10391-10402
The dioxo tungsten(VI) and molybdenum(VI) complexes WCl2(O)2(OPMePh2)2, WCl2(O)2dppmO2, and MoCl2(O)2dppmO2, the oxoperoxo compounds WCl2(O)(O2)(OPMePh2)2, WCl2(O)(O2)dppmO2, and MoCl2(O)(O2)dppmO2, and the oxodiperoxo complexes, W(O)(O2)2dppmO2 and Mo(O)(O2)2dppmO2 have been prepared and characterized by IR spectroscopy, 31P NMR spectroscopy, elemental analysis, and X-ray crystallography. The structural and X-ray crystallographic data of compounds WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 are also detailed. All complexes were studied as catalysts for cis-cyclooctene epoxidation in the presence of tert-butyl hydroperoxide (TBHP) or H2O2 as an oxidant. The Mo-based catalysts showed a superior reactivity over W-based catalysts in the TBHP system. On the other hand, in the H2O2 system, the W-based catalysts (accomplishing nearly 100% epoxidation of cyclooctene in 6 h) are more reactive than the Mo catalysts (<45% under some conditions). Various solvent systems have been investigated, and ethanol is the most suitable solvent for the H2O2 system.  相似文献   

3.
Summary The following compounds were synthesized by the reaction of secondary aliphatic amines with 2-alkoxyl-and 2 phenoxy vinylphosphonic dichlorides: the bisdimethylamides of 2-ethoxy-, 2-isopropoxy-, 2-butoxy, and 2 phonoxy vinylphosphonic acids; teh bisdiethylamides of 2-ethoxy-, 2-isopropoxy-, 2-butoxy-, and 2-phenoxyvinylphosphonic acids; the bisdibutylamides of 2-ethoxy-, 2-propoxy-, 2-isopentyloxy-, and 2-phenoxyl-vinyl-phosphonic acids; and the dipiperidides of 2-ethoxy-, 2-butoxy-, and 2-phenoxyl-vinylphosphonic acids.  相似文献   

4.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

5.
The action of chloromethyl ether on di(2-thienyl)methane, 1, 1-di-(2-thienyl)ethane, 2, 2-di(2-thienyl)propane, 2, 5-bis(dimethyl-2-thienylmethyl)thiophene, and 1, 1, 1-tri(2-thienyl)ethane has given, respectively: 5-chloromethyl -2 -thienylthiophene, 1, 1-bis(5-chloro-methyl-2-thienyl)ethane, 2, 2-bis(5-chloromethyl-2-thienyl)propane, 2, 5-bis(dimethyl-5-chloromethyl-2-thienylmethyl)thiophene, 1-(2-thienyl)-1, 1-bis(5-chloromethyl-2-thienyl)-ethane, and the corresponding amines: 5-diethylaminomethyl-2-thienylthiophene, 1,1-Bis(5-diethylaminomethyl-2-thienyl)ethane, 2, 2-bis(5-aminomethyl-2 -thienyl)propane, 2, 2-bis(5-methylaminomethyl-2-thienyl)propane, 2, 5-bis(dimethyl-5-dimethylaminomethyl-2-thienylmethyl)thiophene, and 2, 8, 8, 14, 20, 20-hexamethyl-2, 14-diaza-3, 2, 3, 2-α-cyclotetrathiene. The reductive desulfonation over Raney nickel of the diacetyl derivatives of 2, 2-bis(5-aminomethyl-2-thienyl)propane and 2, 2-bis(5-methylaminomethyl-2-thienyl)propane has given the diacetyl derivatives of aliphatic amines.  相似文献   

6.
The action of chloromethyl ether on di(2-thienyl)methane, 1, 1-di-(2-thienyl)ethane, 2, 2-di(2-thienyl)propane, 2, 5-bis(dimethyl-2-thienylmethyl)thiophene, and 1, 1, 1-tri(2-thienyl)ethane has given, respectively: 5-chloromethyl -2 -thienylthiophene, 1, 1-bis(5-chloro-methyl-2-thienyl)ethane, 2, 2-bis(5-chloromethyl-2-thienyl)propane, 2, 5-bis(dimethyl-5-chloromethyl-2-thienylmethyl)thiophene, 1-(2-thienyl)-1, 1-bis(5-chloromethyl-2-thienyl)-ethane, and the corresponding amines: 5-diethylaminomethyl-2-thienylthiophene, 1,1-Bis(5-diethylaminomethyl-2-thienyl)ethane, 2, 2-bis(5-aminomethyl-2 -thienyl)propane, 2, 2-bis(5-methylaminomethyl-2-thienyl)propane, 2, 5-bis(dimethyl-5-dimethylaminomethyl-2-thienylmethyl)thiophene, and 2, 8, 8, 14, 20, 20-hexamethyl-2, 14-diaza-3, 2, 3, 2--cyclotetrathiene. The reductive desulfonation over Raney nickel of the diacetyl derivatives of 2, 2-bis(5-aminomethyl-2-thienyl)propane and 2, 2-bis(5-methylaminomethyl-2-thienyl)propane has given the diacetyl derivatives of aliphatic amines.  相似文献   

7.
杂元素冠醚研究 Ⅶ.多硒杂冠醚及其钯配合物的合成   总被引:2,自引:0,他引:2  
李卫平  刘秀芳  徐汉生 《化学学报》1994,52(11):1082-1087
在碱性条件下,1,2-二硒杂环戊烷被硼氢化钠还原成双硒负离子,然后和二醇的二对甲苯磺酸酯或二氯化物缩合成环,得到六个二硒杂冠醚(2a,3a,4a,5a,6a,7a)和七个四硒杂冠醚(2b,3b,4b,5b,6b,7b,8b).同时,通过5a,5b与二氯化钯反应,合成了两个钯配合物,并讨论了其配位特征  相似文献   

8.
Yang Z  Ma X  Roesky HW  Yang Y  Magull J  Ringe A 《Inorganic chemistry》2007,46(17):7093-7096
A series of novel aluminum heterobimetallic selenides were reported. The reaction of LAl(SeH)2 (1) with LiN(SiMe3)2 resulted in the formation of [LAl(SeLi)2(THF)2] (2) (L = HC(CMeNAr)2, Ar = 2,6-iPr2C6H3). Compound 2 reacted with Me2GeCl2, Ph2GeCl2, Cp2TiCl2, and Cp2ZrCl2, respectively, to produce LAl(mu-Se)2GeMe2 (3), LAl(mu-Se)2GePh2 (4), LAl(mu-Se)2TiCp2 (5), and LAl(mu-Se)2ZrCp2 (6) in moderate yields. Compounds 2-6 were characterized by elemental analysis, NMR, and electron impact-MS. The X-ray single-crystal structure of 3 is reported and confirms the spirocyclic arrangement of the aluminum atom within the six-membered AlN2C3 and four-membered AlSe2Ge rings.  相似文献   

9.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

10.
Reactions of atomic and ligated dipositive actinide ions, An2+, AnO2+, AnOH2+, and AnO2(2+) (An = Th, U, Np, Pu, Am) were systematically studied by Fourier transform ion cyclotron resonance mass spectrometry. Kinetics were measured for reactions with the oxidants, N2O, C2H4O (ethylene oxide), H2O, O2, CO2, NO, and CH2O. Each of the five An2+ ions reacted with one or more of these oxidants to produce AnO2+, and reacted with H2O to produce AnOH2+. The measured pseudo-first-order reaction rate constants, k, revealed disparate reaction efficiencies, k/k(COL): Th2+ was generally the most reactive and Am2+ the least. Whereas each oxidant reacted with Th2+ to give ThO2+, only C2H4O oxidized Am2+ to AmO2+. The other An2+ exhibited intermediate reactivities. Based on the oxidation reactions, bond energies and formation enthalpies were derived for the AnO2+, as were second ionization energies for the monoxides, IE[AnO+]. The bare dipositive actinyl ions, UO2(2+), NpO2(2+), and PuO2(2+), were produced from the oxidation of the corresponding AnO2+ by N2O, and by O2 in the cases of UO2+ and NpO2+. Thermodynamic properties were derived for these three actinyls, including enthalpies of formation and electron affinities. It is concluded that bare UO2(2+), NpO2(2+), and PuO2(2+) are thermodynamically stable toward Coulomb dissociation to [AnO+ + O+] or [An+ + O2+]. It is predicted that bare AmO2(2+) is thermodynamically stable. In accord with the expected instability of Th(VI), ThO(2+) was not oxidized to ThO2(2+) by any of the seven oxidants. The gas-phase results are compared with the aqueous thermochemistry. Hydration enthalpies were derived here for uranyl and plutonyl; our deltaH(hyd)[UO2(2+)] is substantially more negative than the previously reported value, but is essentially the same as our deltaH(hyd)[PuO2(2+)].  相似文献   

11.
The new oligophosphines [H2P(CH2)2]2PH, [H2P(CH2)2P(H)CH2]2, and{[(H2P(CH2)2]2PCH2}2 have been made by hydrophosphination of diethyl vinylphosphonate (2) with H2P(CH2)2PH2 (1), using different ratios of 2/1, followed by LiAlH4 reduction of the phosphonate intermediates; the three phosphonate precursors were obtained as oils of varying purity (approximately 90-95%) in low (approximately 20%) to almost quantitative yield. The tri-, tetra-, and hexaphosphines were then treated with formaldehyde in the presence of hydrochloric acid to generate the corresponding water-soluble (hydroxymethyl)phosphonium chlorides {(HOCH2)3P[(CH2)2P(CH2OH)2]n(CH2)2P(CH2OH)3}Cl m (n = 1, m = 3; n = 2, m = 4) and {[(HOCH2)3P(CH2)2]2P(CH2OH)CH2}2Cl6 that were characterized by NMR spectroscopy and elemental analysis. The known (hydroxymethyl)bisphosphonium chloride [(HOCH2)3P(CH2)2]2Cl2 was similarly prepared from H2P(CH2)2PH2, and the determined crystal structure revealed strong hydrogen bonding between the chloride anions and the hydrogen atoms of the hydroxymethyl groups.  相似文献   

12.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

13.
中心为氨基、末端为硝基的苯乙炔树枝状分子的合成   总被引:1,自引:0,他引:1  
将固定相合成与“收敛/发散”方法相结合,合成了第一、二代苯乙炔树枝状分子.通过Heck-Cassar-Sonogashira-Hagihara偶联反应,将其中心和末端分别修饰上供电子的氨基和拉电子的硝基,得到第一、二代中心为氨基、末端为硝基的苯乙炔树枝状分子NH2-G1-(NO2)2和NH2-G2-(NO2)4.用傅里叶变换红外光谱跟踪了整个固定相合成过程.苯乙炔树枝状分子的紫外-可见吸收光谱呈现出规律性变化.  相似文献   

14.
Mechanism of hydrogenation reaction in the Li-Mg-N-H system   总被引:1,自引:0,他引:1  
The Li-Mg-N-H system composed of 3 Mg(NH2)2 and 8 LiH reversibly desorbs/absorbs approximately 7 wt % of H2 at 120-200 degrees C and transforms into 4 Li2NH and Mg3N2 after dehydrogenation. In this work, the mechanism of the hydrogenation reaction from 4 Li2NH and Mg3N2 to 8 LiH and 3 Mg(NH2)2 was investigated in detail. Experimental results indicate that 4 Li2NH is first hydrogenated into 4 LiH and 4 LiNH2. At the next step, 4 LiNH2 decomposes into 2 Li2NH and 2 NH3, and the emitted 2 NH3 reacts with (1/2) Mg3N2 and produces the (3/2) Mg(NH2)2 phase, while the produced 2 Li2NH is hydrogenated into 2 LiH and 2 LiNH2 again. Such successive steps continue until all 4 Li2NH and Mg3N2 completely transform into 8 LiH and 3 Mg(NH2)2 by hydrogenation.  相似文献   

15.
对若干线型Mo一Fe一S簇合物[Cl2FeS2MoS2FeCl2][-2](1)、[S2MoS2FeCl2]^2^-(2)、[S2MoS2Fe(SPh)2][2-](3)、[S2MoS2FeS2Fe(SPh)2][3-](4)、[S2MoS2FeS2MoS2][3-](5)、Cl2FeS2FeCl2][2-](6)、[(PhS)2FeS2Fe(SPh)2][2-](7)的红外光谱进行了研究。通过比较它们的特征频率、结构参数和金属原子的氧化态,对νMo-St、νMo-SbνFe-Sb、νFe-SPh、νFe-Cl进行了归属。并对δS-Mo-S的归属作了初步探讨。文中讨论了MoS2Fe单元中Mo原子对νFe-Sb的影响, 通过振动频率与结构关系的研究揭示其内在联系及规律性。对两条途径的亲电诱导效应进行了讨论, 并提出一个能定性标志Fe→Mo电荷迁移大小的有用参数Δν值。  相似文献   

16.
Metal-halide complexes of a multidentate monoanionic ligand tBuN(H)SiMe2N(CH2CH2PiPr2)2, H[N2P2], with Ti, V, Cr, Mn, Fe, Co, and Ni have been isolated and characterized. X-ray crystallographic studies were performed on [N2P2]TiCl2 (3), [N2P2]CrCl2 (5), [N2P2]MnCl (6), [N2P2]FeCl (7), [N2P2]CoCl (8), and [N2P2]NiBr (9), and the results revealed that the [N2P2] ligand exhibits considerable flexibility in the manner in which it binds to first-row metals and that three distinct coordination modes are observed: kappa3-N2P (Ti), kappa3-NP2 (Mn, Fe, Co), and kappa4-N2P2 (Cr, Ni). Electrochemical (CV) data and room-temperature magnetic susceptibilities are also described.  相似文献   

17.
本文合成了9种含有由天然D( )鄄樟脑衍生的1R,3S鄄1,2,2鄄三甲基鄄1,3鄄环戊二胺(A)为配体的铂髤配合物[Pt髤AX]{其中,X=(CH2)3C(COO-)2(1,1鄄环丁烷二羧酸根),2CH3OCH2COO-,2CH3CH2OCH2COO-,2CH3(CH2)3OCH2COO-,[OCH(CH3)COO]2-(乳酸根),(OCH2COO)2-(乙醇酸根),2CH3OCH2CH2OCH2COO-,2CH3CH2OCH2CH2OCH2COO-和2CH3(CH2)3OCH2CH2OCH2COO-}。通过元素分析、热重分析、红外光谱、1H核磁共振谱和电喷雾质谱等对配合物进行了表征。体外生物活性测试表明,部分配合物对A549人肺癌细胞和HCT鄄116人结肠癌细胞具有较强的抗肿瘤活性。  相似文献   

18.
我国柴达木盐湖近期研究表明:新类型盐湖卤水可以近似地的看作是天然的(Li)、Na~ 、K~ 、Mg~(2 )Cl~-、SO_4~(2-)、B_4O_7~(2-)-H_2O的多元水盐体系。新类型硼酸盐卤水经日晒蒸发析盐后,得到的氯化镁饱和卤水中钠和钾的含量甚少,可以被看作是Li~ 、Mg~(2 )Cl~-、SO_4~(2 )、B_4O_7~(2-)-H_2O五元水盐体系。研究它,不仅可以丰富水盐溶液化学、锂盐化学和硼酸盐化  相似文献   

19.
The displacement of CO in a few simple Fe(I)-Fe(I) hydrogenase model complexes by bisphosphine ligands Ph2P-(CH2)n-PPh2 [with n = 1 (dppm) or n = 2 (dppe)] is described. The reaction of [{mu-(SCH2)2CH2}Fe2(CO)6] (1) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)6] (2) with dppe gave double butterfly complexes [{mu-(SCH2)2CH2}Fe2(CO)5(Ph2PCH2)]2 (3) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5(Ph2PCH2)]2 (4), where two Fe2S2 units are linked by the bisphosphine. In addition, an unexpected byproduct, [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5{Ph2PCH2CH2(Ph2PS)}] (5), was isolated when 2 was used as a substrate, where only one phosphorus atom of dppe is coordinated, while the other has been converted to P=S, presumably by nucleophilic attack on bridging sulfur. By contrast, the reaction of 1 and 2 with dppm under mild conditions gave only complexes [{mu-(SCH2)2CH2}Fe2(CO)5(Ph2PCH2PPh2)] (6) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)5(Ph2PCH2PPh2)] (8), where one ligand coordinated in a monodentate fashion to one Fe2S2 unit. Furthermore, under forcing conditions, the complexes [{mu-(SCH2)2CH2}Fe2(CO)4{mu-(Ph2P)2CH2}] (7) and [{mu-(SCH2)2N(CH2CH2CH3)}Fe2(CO)4{mu-(Ph2P)2CH2}] (9) were formed, where the phosphine acts as a bidentate ligand, binding to both the iron atoms in the same molecular unit. Electrochemical studies show that the complexes 3, 4, and 9 catalyze the reduction of protons to molecular hydrogen, with 4 electrolyzed already at -1.40 V versus Ag/AgNO3 (-1.0 V vs NHE).  相似文献   

20.
Complete active space self-consistent-field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with atomic natural orbital basis sets were performed to investigate the S-loss direct dissociation of the 1 2Pi(X 2Pi), 2 2Pi(A 2Pi), 1 2Sigma+(B 2Sigma+), 1 4Sigma-, 1 2Sigma-, and 1 2Delta states of the OCS+ ion and the predissociations of the 1 2Pi, 2 2Pi, and 1 2Sigma+ states. Our calculations indicate that the S-loss dissociation products of the OCS(+) ion in the six states are the ground-state CO molecule plus the S+ ion in different electronic states. The CASPT2//CASSCF potential energy curves were calculated for the S-loss dissociation from the six states. The calculations indicate that the dissociation of the 1 4Sigma- state leads to the CO + S+ (4Su) products representing the first dissociation limit; the dissociations of the 1 2Pi, 1 2Sigma-, and 1 2Delta states lead to the CO + S+(2Du) products representing the second dissociation limit; and the dissociations of the 2 2Pi and 1 2Sigma+ states lead to the CO + S+(2Pu) products representing the third dissociation limit. Seams of the 1 2Pi-1 4Sigma-, 2 2Pi-1 4Sigma-, 2 2Pi-1 2Sigma-, 2 2Pi-1 2Delta, and 1 2Sigma(+)-1 4Sigma- potential energy surface intersections were calculated at the CASPT2 level, and the minima along the seams were located. The calculations indicate that within the experimental energy range (15.07-16.0 eV) the 2 2Pi(A 2Pi) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 1 2Pi followed by the direct dissociation of 1 2Pi forming S+(2Du) and that within the experimental energy range (16.04-16.54 eV) the 1 2Sigma+(B 2Sigma+) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 2 2Pi followed by the predissociation of 2 2Pi by 1 2Sigma- and 1 2Delta forming the S+(2Du) ion. These indications are in line with the experimental fact that both the 4Su and 2Du states of the S+ ion can be formed from the 2 2Pi and 1 2Sigma+ states of the OCS+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号