首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Highly ordered protein arrays have been proposed as a means for templating the organization of nanomaterials. Toward this end, we investigate the ability of the protein streptavidin to self-assemble into various configurations on solid-supported phospholipids. We identify two genetic variants of streptavidin (comprising amino acids 14-136 and 13-139) and examine their molecular organization at the liquid-solid interface. Our results demonstrate that the structural differences between these two protein variants affect both crystalline lattice and domain morphology. In general, these results for the liquid-solid interface are similar and consistent with those at the air-water interface with a few notable differences. Analogous to crystallization at the air-water interface, both forms of streptavidin yield H-like domains with lattice parameters that have C222 symmetry at pH 7. At pH 4, the native, truncated form of streptavidin yields needle-like domains consisting of molecules arranged in P1 symmetry. Unlike crystalline domains grown at the air-water interface, however, the lattice parameters of this P1 crystal are unique and have not yet been reported. The presence of a solid substrate does not appear to dramatically alter streptavidin's two-dimensional crystallization behavior, suggesting that local intermolecular interactions between proteins are more significant than interactions between the interface and protein. Our results also demonstrate that screening the electrostatic repulsion between protein molecules by modulating ionic strength will increase growth rate while decreasing crystalline domain size and macroscopic defects. Finally, we show that these domains are indeed functional by attaching biotinylated gold nanoparticles to the crystals. The ability to modulate molecular configuration, crystalline defects, and domain size on a functional array supports the potential application of this system toward materials assembly.  相似文献   

2.
Zeolite X membranes were investigated by in-situ hydrothermal synthesis on porous ceramic tubes precoated with zeolite X seeds or precursor amorphous aluminosilicate, and porous α-Al2O3 ceramic tubes with a pore size of 50 200 nm were employed as supports. Zeolite X crystals were synthesized by the classic method and mixed into deionized water as a slurry with a concentration of 0.2 0.5wt%, having a range of crystal sizes from 0.2 to 2μm. Crystal seeds were pressed into the pores near the inner surface of the ceramic tubes, and crystallization took place at 95℃ for 24-96 h. It was also investigated that Boehmite sol added with zeolite X seeds was precoated on ceramic supports to form a layer of γ-Al2O3 by heating, and hydrothermal crystallization could then take place to prepare the zeolite membranes on the composite ceramic tubes. The crystal species were characterized by XRD, and the morphology of the supports subjected to crystallization was characterized by SEM. The composite zeolite membranes have zeolitic top-layers with a thickness of 10-25 μm, and zeolite crystals can be intruded into pores of the supports as deeply as 100μm. The experimental results indicate that the precoating of zeolitic seeds on supports is beneficial to crystallization by shortening the synthesis time and improving the membrane strength. The resulting zeolite X membrane shows permselectivity to tri-n-butylamine((C4H9)3N) over perfluro-tributyl-amine ((C4Fg)3N), and a permeance ratio of 57 for ((C4Hg)3N to (C4F9)3N could be reached at 350℃. Permeances of BZ, EB and TIPB through the zeolite membrane were also measured and were found to slightly increase with temperature.  相似文献   

3.
梁翼然  祝莹  方群 《色谱》2016,34(12):1137-1144
基于X射线晶体学的蛋白质结构解析主要依赖于大规模结晶条件筛选获得的高衍射分辨率的蛋白质晶体。近年来,自动化、高通量的液体操控技术和相关仪器的快速发展为蛋白质结晶筛选提供了高效、可靠的研究手段,显著推动了蛋白质结构生物学的研究。文章综述了蛋白质结晶筛选的自动化液体处理技术的发展,包括移液器、注射泵、同步纳升定量吸取注射、喷墨打印、超声喷射以及微流控等技术。文章详细介绍了各技术所对应的典型商品化仪器及其在蛋白质结晶筛选中的应用。此外,文章还介绍了集成多孔板的储存和操控、编码扫描、环境控制和软件管理等诸多功能的一体化液体操纵平台。  相似文献   

4.
We adopt a cluster size distribution model to investigate the kinetics of nonisothermal polymer crystallization. The time dependencies of polymer concentration, number and size of crystals, and crystallinity (in Avrami plots) are presented for different cooling rates. The incubation period is also investigated at different cooling rates and initial temperatures. The relationship between cooling rates and incubation time is presented graphically and compared with experimental measurements. The initial temperature (relative to melting point) has a significant effect on nonisothermal crystallization. A comparison of moment and numerical solutions of the population balance equations shows the influence of Ostwald ripening. Agreement between modeling results and experimental measurements at different cooling rates supports the application of the distribution kinetics model for nonisothermal crystallization.  相似文献   

5.
A new criterion based on surface and volume diffusion kinetics was established to predict protein crystallization. Similar to the layer-by-layer crystal growth process of protein, the kinetics of the two-dimensional self-assembly of protein at the aqueous solution surface provides a convenient and reliable way to estimate the surface integration and the volume transport during protein crystallization. Both the surface and diffusion kinetics were estimated based on the protein self-assembly at the air/solution interface, which can be obtained by measuring the surface tension. A crystallization coefficient is found to provide an effective and reliable criterion to predict protein crystallization conditions. This criterion has been applied to lysozyme, concanavalin A and BSA crystallization, and it turns out to be very successful and more reliable than the second virial coefficient criterion.  相似文献   

6.
Protein crystallization is important for structural biology. The rate at which a protein crystallizes is often the bottleneck in determining the protein's structure. Here, we give a physical model for the growth rates of protein crystals. Most materials crystallize faster under stronger growth conditions; however, protein crystallization slows down under the strongest conditions. Proteins require a crystallization slot of 'just right' conditions. Our model provides an explanation. Unlike simpler materials, proteins are orientationally asymmetrical. Under strong conditions, protein molecules attempt to crystallize too quickly, in wrong orientations, blocking surface sites for more productive crystal growth. The model explains the observation that increasing the net charge on a protein increases the crystal growth rate. The model predictions are in good agreement with experiments on the growth rates of tetragonal lysozyme crystals as a function of pH, salt concentration, temperature, and protein concentration.  相似文献   

7.
Protein crystallization is a major bottleneck in determining tertiary protein structures from genomic sequence data. This paper describes a microfluidic system for screening hundreds of protein crystallization conditions using less than 4 nL of protein solution for each crystallization droplet. The droplets are formed by mixing protein, precipitant, and additive stock solutions in variable ratios in a flow of water-immiscible fluids inside microchannels. Each droplet represents a discrete trial testing different conditions. The system has been validated by crystallization of several water-soluble proteins.  相似文献   

8.
9.
Herein, we demonstrate the potential of droplet‐based microfluidics for controlling protein crystallization and generating single‐protein crystals. We estimated the critical droplet size for obtaining a single crystal within a microdroplet and investigated the crystallization of four model proteins to confirm the effect of protein molecular diffusion on crystallization. A single crystal was obtained in microdroplets smaller than the critical size by using droplet‐based microfluidics. In the case of thaumatin crystallization, a single thaumatin crystal was obtained in a 200 μm droplet even with high supersaturation. In the case of ferritin crystallization, the nucleation profile of ferritin crystals had a wider distribution than the nucleation profiles of lysozyme, thaumatin, and glucose isomerase crystallization. We found that the droplet‐based microfluidic approach was able to control the nucleation of a protein by providing control over the crystallization conditions and the droplet size, and that the diffusion of protein molecules is a significant factor in controlling the nucleation of protein crystals in droplet‐based microfluidics.  相似文献   

10.
The crystallization behavior and fine structure of poly(butylene succinate) (PBS) nanocomposites with intercalation (30B20) and exfoliation (30BM20) morphologies, respectively, were investigated via isothermal crystallization testing and synchrotron small-angle X-ray scattering (SAXS). The dynamic viscosity of 30BM20 was markedly increased due to favorable interactions between the PBS matrix and the urethane group on the clay surface. However, 30BM20 showed similar crystallization rates to that of homo PBS because the surface urethane modification for 30BM20 precluded PBS matrix from the metallic group into clay to difficult in contact with each other, resulting in a reduced nucleation activity for the metallic group. SAXS profiles revealed that the long period and amorphous region size for 30B20 drastically decreased during isothermal crystallization. Meanwhile, 30BM20 was similar to those of homo PBS. This result also supports the above explanation for isothermal crystallization behavior. Considering all results in total, the introduction of a urethane modification considerably enhanced the physical properties of PBS but caused delayed crystallization rates.  相似文献   

11.
微流控技术应用于蛋白质结晶的研究*   总被引:3,自引:0,他引:3  
李俊君  陈强  李刚  赵建龙  朱自强 《化学进展》2009,21(5):1034-1039
随着微电子微机械等技术的不断进步,微流控(microfluidics)技术成为目前迅速发展的前沿领域之一,是化学科学和生命科学分析研究的重要技术平台。微流控技术高通量、低消耗和低成本的特点使其在蛋白质结晶条件筛选和优化方面展示了良好的应用前景。本文对应用于蛋白质结晶的各种微流控芯片技术的原理和方法进行了综述,并对目前几种商业化和文献报道的典型蛋白质结晶微流控系统进行了介绍和比较。  相似文献   

12.
Solution conditions conducive to protein crystallization are identified mainly in an empirical manner using screening methods. Measurements of a dilute solution thermodynamic parameter, the osmotic second virial coefficient, have been shown to be useful in guiding this search, yet the measurement of this parameter remains difficult. In this work, a nanoparticle-based assay, self-interaction nanoparticle spectroscopy, is presented as an efficient alternative. The method involves adsorbing proteins on the surface of gold nanoparticles and adding the protein/gold conjugates to solutions of interest for crystallization. The optical properties of gold colloid, including macroscopic ones such as color, are sensitive to the interparticle separation distance, and they are demonstrated to correlate with the value of the second virial coefficient for BSA and ovalbumin. Serendipitously, the conditions that correspond to second virial coefficient values within the thermodynamic region ideal for protein crystallization lead to the maximum change in color of the gold suspensions. Given the remarkable efficiency of this method, it holds significant potential to aid in the crystallization of proteins that have not been crystallized previously. Moreover, this method may find utility in the analysis of weak homo- and heterotypic interactions involved in other biological applications, including preventing protein aggregation and formulating therapeutic proteins.  相似文献   

13.
We have observed 2D protein crystallization under conditions where in the absence of flow, crystallization fails to occur. Even under conditions where crystallization does occur in quiescent systems, we have found that flow can accelerate the crystallization process. By interrogating the flow responsible for this enhanced crystallization, we have correlated the enhancement with large shear in the plane of the interface. Some possible mechanisms for why interfacial shear can enhance the crystallization process are proposed.  相似文献   

14.
The crystallization of bacterial surface layer proteins (S-layer proteins) at phosphoethanolamine monolayers on aqueous (buffer) surfaces has been investigated with dual label fluorescence microscopy, FTIR spectroscopy, and electron microscopy. The phase state of the lipid exerts a marked influence on protein crystallization: when the surface monolayer is in the phase-separated state between the isotropic and anisotropic fluid phases, the S-layer protein is preferentially adsorbed at the isotropic phase. Protein crystals nucleate at the boundary lines between the coexisting lipid phases and crystallization proceeds underneath the anisotropic fluid. Crystal growth is much slower under the fluid lipid and the entire interface is overgrown only after prolonged protein incubation. In turn, as indicated by characteristic frequency shifts of the methylene stretch vibrations on the lipids, protein crystallization affects the order of the alkane chains and drives the fluid lipid into a state of higher order. Most probably, the protein does not interpenetrate the lipid surface monolayer and the coupling between protein and lipid occurs via the lipid head groups.  相似文献   

15.
Difficulties previously encountered in the growth of chain-folded single crystals of isotactic polystyrene suitable for study by electron microscopy and electron diffraction have been overcome using very poor solvents (including atactic polystyrene of low molecular weight). The hexagonal lamellar crystals produced are relatively stable under electron bombardment and, as a consequence, dark-field moiré patterns produced by double diffraction from overlapping layers are easy to study. These patterns show no evidence of differences in lattice spacing between fold and nonfold planes such as have been reported in single crystals of several other polymers. Such differences were attributed to congestion at fold surfaces and their absence in polystyrene, for which the surface energy of fold surfaces is small, supports this interpretation. A comparison of crystallization kinetics of polystyrene crystals grown from good and from poor solvents reveals differences in growth rates of three or more orders of magnitude at comparable supercoolings. This disparity cannot be accounted for by acceptable adjustments of thermodynamic parameters in current theories of crystallization with chain folding. The role of molecular conformation in solution appears to exert an unexpectedly large influence on crystallization rate.  相似文献   

16.
The introduction of β-nucleating agent into isotactic polypropylene (iPP) is the most effective method to prepare β-iPP. In this paper, iPP nucleated with a novel highly efficient supported β-nucleating agent (NA100), calcium pimelate (CaHA) supported on the surface of nano-CaCO3, was prepared and its nonisothermal crystallization kinetic, melting characteristic, and crystallization activation energy are investigated and compared with those of pure iPP, nano-CaCO3 filled iPP, and β-nucleating agent CaHA nucleated iPP. The results indicate that addition of nano-CaCO3 increases the crystallization temperature of iPP and has no influence on the crystal form of iPP. iPP and nano-CaCO3 filled iPP mainly crystallize in the form of α-crystal. Although NA100 and CaHA induce iPP to mainly form β-crystal, NA100 nucleated iPP shows higher crystallization temperature, melting temperature, and β-phase content than that nucleated with CaHA without supports. Nonisothermal crystallization kinetic is well described by the equations of Avrami and Mo, and the crystallization activation energy was calculated from Kissinger’s method. It was found that the decreased crystallization activation energy is favorable to increase the crystallization rate and the content of β-crystal. Although the content of CaHA in 5 wt% NA100 nucleated iPP was less than that in 0.1 wt% CaHA nucleated iPP, the former formed more β-iPP than the latter, indicating that the β-nucleating agent CaHA supported on the surface of nano-CaCO3 exhibits higher efficiency for preparation of β-iPP than pure CaHA powder.  相似文献   

17.
Lipid-based lyotropic liquid crystals (LLCs) show great potential for applications in fields as diverse as food technology, cosmetics, pharmaceutics, or structural biology. Recently, these systems have provided a viable alternative to the difficult process of membrane protein crystallization, owing to their similarities with cell membranes. Nonetheless, the process of in-meso crystallization of proteins still remains poorly understood. In this study, we demonstrate that in-meso crystal morphologies of lysozyme (LSZ), a model hydrophilic protein, can be controlled by both the composition and symmetry of the mesophase, inferring a possible general influence of the LLC space group on the protein crystal polymorphism. Lysozyme was crystallized in-meso from three common LLC phases (lamellar, inverse hexagonal, and inverse bicontinuous cubic) composed of monolinolein and water. Different mixing ratios of mesophase to crystallization buffer were used in order to tune crystallization both in the bulk mesophase and in excess water conditions. Two distinct mechanisms of crystallization were shown to take place depending on available water in the mesophases. In the bulk mesophases, protein nuclei form and grow within structural defects of the mesophase and partially dehydrate the system inducing order-to-order transitions of the liquid crystalline phase toward stable symmetries in conditions of lower hydration. The formed protein crystals eventually macrophase separate from the mesophase allowing the system to reach its final symmetry. On the other hand, when excess water is available, protein molecules diffuse from the water channels into the excess water, where the crystallization process can take place freely, and with little to no effect on the structure and symmetry of the lyotropic liquid crystals.  相似文献   

18.
Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product.  相似文献   

19.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

20.
构建了一种基于渗透脱水模式的自动进样微流控结晶芯片. 该芯片通过真空预脱气将包含蛋白质和结晶剂的液滴自动分配至结晶微腔阵列中, 然后利用集成的一排包含不同浓度盐溶液的透析管道, 通过渗透脱水方式经一层聚二甲基硅氧烷(PDMS)膜实现液滴的逐渐浓缩, 使之趋于过饱和状态, 进而形成结晶. 此芯片可一次筛选较宽范围的过饱和状态, 实现蛋白质结晶的快速优化. 利用模式蛋白溶菌酶的结晶实验验证了该芯片的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号