首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cationic poly(p-phenylenevinylene) derivative (PPV) is designed and synthesized to bear quaternized N-methyl-imidazole groups, which is successfully utilized in lysosome-specific and long-term imaging.  相似文献   

2.
In this study, we report the synthesis of highly emissive AIEgen-based NPs as long-term cell trackers, which enjoy the advantages of high brightness, good stability, large Stokes shift, good biocompatibility, and high photostability. The SCA NPs were successfully applied for in vitro long-term bio-imaging of HeLa cells, indicating that the SCA NPs could be ideal fluorescent probes for non-invasive long-term cellular imaging.  相似文献   

3.
Fluorescent dyes with large Stokes shift play a key role in avoiding self-quenching and scattered light of dyes in the process of biological imaging. In this work, a novel mitochondria-targetable fluorescent dye (PI-C2) with large Stokes shift (e. g. Maximum value is 219 nm in DMSO) have been developed. Compared to the commercial mitochondria probes MTR and MTG (Less than 30 nm in various solution), the newly constructed PI-C2 has a much larger Stokes shift in various solutions (169–219 nm in various solutions). Furthermore, the probe can successfully be applied for sensing mitochondria, and exhibited excellent photostability in different living cell lines. The novel fluorescent platform with the large Stokes may be extended to construct powerful fluorescent probes with large Stokes shift for detecting a wide variety of biomolecules in mitochondria.  相似文献   

4.
A naphthalimide-modifi ed near-infrared cyanine dye (emission at 785 nm) with a large Stokes shift (up to 165 nm) has been synthesized and had favorable lysosome-targeting property.  相似文献   

5.
《中国化学快报》2021,32(12):3890-3894
Rhodamine dyes have been widely employed in biological imaging and sensing. However, it is always a challenge to design rhodamine derivatives with huge Stokes shift to address the draconian requirements of single-excitation multicolor imaging. In this work, we described a generally strategy to enhance the Stokes shift of rhodamine dyes by completely breaking their electronic symmetry. As a result, the Stokes shift of novel rhodamine dye DQF-RB-Cl is up to 205 nm in PBS, which is the largest in all the reported rhodamine derivatives. In addition, we successfully realized the single excitation trichromatic imaging of mitochondria, lysosomes and cell membranes by combining DQF-RB-Cl with commercial lysosomal targeting probe Lyso-Tracker Green and membrane targeting dye Dil. This is the organic synthetic dyes for SLE-trichromatic imaging in cells for the first time. These results demonstrate the potential of our design as a useful strategy to develop huge Stokes shift fluorophore for bioimaging.  相似文献   

6.
Background autofluorescence from biological systems generally reduces the sensitivity of a fluorescent probe for imaging biological targets. Addressing this challenge requires the development of fluorescent probes that produce emission in the near‐infrared region. Herein, we report the design and synthesis of a fluorescent probe that generates an NIR emission with a large Stokes shift upon the selective response to Cys over Hcy and GSH. The probe is designed to consist of two Cys‐sensing sites, an acrylate ester and an aldehyde installed ortho to each other. The reaction of the probe with Cys triggers an excited state intramolecular proton transfer process upon photo‐excitation, thereby producing an NIR emission with a large Stokes shift. Accordingly, this probe hold great promise for the selective detection of Cys in biological systems. We further demonstrate the capacity of this probe for Cys imaging in living cells.  相似文献   

7.
A novel type of quantum dot (Ph‐CN) is manufactured from graphitic carbon nitride by “lining” the carbon nitride structure with phenyl groups through supramolecular preorganization. This approach requires no chemical etching or hydrothermal treatments like other competing nanoparticle syntheses and is easy and safe to use. The Ph‐CN nanoparticles exhibit bright, tunable fluorescence, with a high quantum yield of 48.4 % in aqueous colloidal suspensions. Interestingly, the observed Stokes shift of approximately 200 nm is higher than the maximum values reported for carbon nitride based fluorophores. The high quantum yield and the large Stokes shift are related to the structural surface organization of the phenyl groups, which affects the π‐electron delocalization in the conjugated carbon nitride networks and induces colloidal stability. The remarkable performance of the Ph‐CN nanoparticles in imaging is demonstrated by a simple incubation study with HeLa cells.  相似文献   

8.
The influence of Stokes shift in optosensing was discussed. Then, the current status of large Stokes shift-based optosensing was reviewed here.  相似文献   

9.
《中国化学快报》2019,30(10):1843-1848
Stokes shift is an important feature of fluorescence, which reveals the energy loss between the excitation and the emission. For most fluorescent materials(e.g., organic dyes and proteins), the large overlap between the absorption and emission spectra endow them a small Stokes shift that induced reabsorption by fluorophore itself. Although the self-absorption can be effectively reduced due to the emergence of fluorescent nanomaterials, fluorescence attenuation is still observed in aggregated or concentrated nanocrystals, causing reduced sensitivity of biosensors. Therefore, increasing the Stokes shift can effectively improve the performance of nano-agents based biosensing. In this critical review, through understanding the Stokes shift from the viewpoint of self-absorption, the influence of Stokes shift on fluorescence properties are discussed. Based on the principle of changing the Stokes shift of fluorescent nanomaterials, we described the methods for constructing various optically large Stokes shift-based nanomaterials, and the application of these nanocrystals in biosensing is especially concerned in this review.  相似文献   

10.
Glutathione (GSH) plays a critical role in maintaining oxidation-reduction homeostasis in biological systems. Considering the detection of GSH by fluorescence sensors is limited by either the short wavelength emission or the poor photostability, a highly stable colorimetric and ratiometric NIR fluorescent sensor (DCM-S) for GSH detection has been constructed on the basis of dicyanomethylene-4H-pyran (DCM) chromophore. The specific disulfide bond is incorporated via a carbamate linker as the GSH responsive group, which simultaneously blue-shifts and quenches the fluorescence. Upon addition of GSH, DCM-S exhibits outstanding colorimetric (from yellow to red) and ratiometric fluorescent response with the 6-fold enhancement of NIR fluorescence at 665 nm in quantum yield. More importantly, the GSH-treated DCM-S (DCM-NH2 actually) possesses 20-fold longer fluorescence half-life period as well as much better photostability than the FDA-approved ICG. Finally, the ratiometric detection of GSH is also successfully operated in the living cell imaging, exhibiting NIR fluorescence and large Stokes shift (215 nm) with nearly no background fluorescence interference. As a consequence, DCM-S can be utilized as colorimetric and ratiometric NIR fluorescent sensor for GSH, with a great potential in the development of GSH-induced drug delivery system.  相似文献   

11.
We have found a simple method to prepare poly(phenylene vinylene) (PPV) nanofibers via electrospinning PPV precursor alcohol solution under annealed at 180 °C in a N2 atmosphere. The nanofibers are uniform in diameter and long in decimeter magnitudes with resistance in decay, which makes them have potential applications in optical and electronic devices. The morphology can be better controlled by blend PPV precursor solution with poly(vinylalcohol) (PVA) aqueous solution. The fluorescence spectrum of PPV/PVA nanofibers exhibited appreciable blue shift, which made it possible to fabricate nanofibers with fluorescence from yellow-green to blue.  相似文献   

12.
Organic fluorophores are indispensible in chemical/biological imaging. The conjugated fluorescent molecules simultaneously possessing highly tunable emission, high quantum yield in solvents of different polarities, and large Stokes shift are quite rare. Herein, we report a new category of fluorophores based on diarylated thieno[3,4-b]thiophenes efficiently synthesized by direct C-H arylation reaction. TbT-Fluors showed full-color-tunable emissions with large Stokes shifts. Intriguingly,the fluorescence quantum yields of TbT-Fluors are barely sensitive to solvent polarities, approaching 100%. Based on photophysical and theoretical investigations, we found that the enhanced oscillator strength of the S_1-S_0 transition and increased T2-S1 energy difference can sufficiently compensate the negative effect from the decreased energy gap and increased reorganization energy in dimethyl sulfoxide(DMSO). Bioimaging applications revealed that some TbT-Fluors can penetrate the cell membrane and are superior for imaging in terms of high photochemical stability and low cytotoxicity. Furthermore, TbT-PhF exhibits specific colocalization with mitochondria in living cells.  相似文献   

13.
The geometric and electronic structures and photophysical properties of anilido‐pyridine boron difluoride dyes 1 – 4 , a series of scarce 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) derivatives with large Stokes shift, are investigated by employing density functional theory (DFT) and time‐dependent DFT (TD‐DFT) calculations to shed light on the origin of their large Stokes shifts. To this end, a suitable functional is first determined based on functional tests and a recently proposed index—the charge‐transfer distance. It is found that PBE0 provides satisfactory overall results. An in‐depth insight into Huang–Rhys (HR) factors, Wiberg bond indices, and transition density matrices is provided to scrutinize the geometric distortions and the character of excited states pertaining to absorption and emission. The results show that the pronounced geometric distortion due to the rotation of unlocked phenyl groups and intramolecular charge transfer are responsible for the large Stokes shift of 1 and 2 , while 3 shows a relatively blue‐shifted emission wavelength due to its mild geometric distortion upon photoemission, although it has a comparable energy gap to 1 . Finally, compound 4 , which is designed to realize the rare red emission in BODIPY derivatives, shows desirable and expected properties, such as high Stokes shift (4847 cm?1), red emission at 660 nm, and reasonable fluorescence efficiency. These properties give it great potential as an ideal emitter in organic light‐emitting diodes. The theoretical results could complement and assist in the development of BODIPY‐based dyes with both large Stokes shift and high quantum efficiency.  相似文献   

14.
Chemical fine-tuning of fluorophores is a pivotal step towards development of next generation fluorescent dyes for microscopy. With the advent of high-resolution two-photon excitation fluorescence imaging, there is a growing demand for very sensitive laser dyes that can be efficiently excited using commercial Ti:sapphire laser sources in the first near-infrared window (NIR-I, 780–1020 nm). Using the fluorescent dye Nile Red as the lead structure, we report a robust and concise Suzuki coupling approach for the synthesis of 14 new Nile Red analogues that feature extended π ring systems and diverse functionalities. For this set, we gauged their two-photon excitation efficiency in NIR-I as well as evaluated their general fluorescent properties (emission wavelength, Stokes shift, quantum yield and solvatochromism). Several of the new fluorophores were found to display very favorable characteristics. In particular, the derivative featuring a 4-aminophenyl group in the 2-position of Nile Red exhibited extreme solvent sensitivity, and the thien-2-yl substituted Nile Red derivative showed significantly redshifted emission, large Stokes shift and high two-photon brightness.  相似文献   

15.
Dynamic fluorescence Stokes shift measurements of coumarin 153 (C153) have been carried out to study the influence of ionic surfactants (sodium dodecyl sulfate, SDS and hexadecyltrimethylammonium chloride, CTAC) on the hydration behavior of aqueous poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)20 (P123) block copolymer micelles. Increase in SDS or CTAC concentration at a fixed P123 concentration induces the steady-state emission spectra of C153 to shift gradually toward lower energy. This is attributed to an increase in polarity (due to enhanced hydration) experienced by the probe as a consequence of incorporation of ionic head groups in the Corona region. The observed dynamic fluorescence Stokes shift value decreases more in mixed micellar systems than in pure copolymer micelles and the trends are quite similar in the presence of SDS and CTAC. The spectral shift correlation functions were observed to be nonexponential in nature. Critical analysis of the spectral shift correlation function indicates a fast solvation component (<0.2 ns) in P123 micelles, which was absent in the presence of ionic surfactants. Due to increased hydration in the presence of ionic surfactants, the initial fast solvation event was elusive in mixed copolymer-surfactant systems, reflecting the absence of faster solvation component and reduced observed Stokes shift in mixed systems. It has been argued that in the low surfactant concentration region, increase in hydration with the incorporation of ionic head groups in the Corona region is mainly due to increase in mechanically trapped water content. However, at higher surfactant concentrations, bound water content dominates and leads to slower solvation dynamics. The present results also indicate that though CTAC alters the Corona hydration more efficiently than SDS, the overall influence of ionic surfactants on the Corona hydration is grossly similar irrespective of the cationic or anionic nature of the surfactants. Interaction of SDS and CTAC with poly(ethylene oxide)(100)-poly(propylene oxide)(70)-poly(ethylene oxide)(100) (F127) block copolymer micelles has also been studied to comprehend the effect of copolymer composition. The overall trends in dynamic fluorescence Stokes shift and solvation times are similar in both the copolymer micelles.  相似文献   

16.
构建了一种新型香豆素-萘酰亚胺荧光/电子顺磁共振双功能探针CNNOH,并结合荧光光谱、电子顺磁共振(EPR)波谱和紫外-可见吸收光谱对其性能进行了研究.结果表明,该探针可结合荧光光谱的灵敏性和EPR波谱的特异性进行次氯酸的检测;由于香豆素与萘酰亚胺之间存在荧光共振能量转移(FRET)效应,探针分子具有较大的Stokes位移(135 nm),可有效避免由激发光导致的杂散光对检测的干扰.该双功能探针具有检出限低(0.214μmol/L)、反应速度快(~10 s)、检测范围宽(0~5 mmol/L)、选择性好及在生理条件下稳定的特点,预期在活体细胞检测方面有良好的应用前景.  相似文献   

17.
《中国化学快报》2023,34(6):107867
By introducing a naphthothiadiazole (NT) unit as the main building block, a non-doped and red emissive conjugated polymer poly(9,9-dihexylfluorene-alt-naphthothiadiazole) (PFNT) is readily obtained through a two-step synthesis. Since the NT unit has a large twist angle with its neighboring segment, the aggregation-induced quenching (AIQ) effect of PFNT can be effectively suppressed in the condensed state. As a result, the corresponding PFNT polymer dot (Pdot) exhibits a high fluorescence quantum yield of 53.2% with peak emission at 616 nm, which is one of the most efficient red Pdots known. PFNT Pdot shows good biocompatibility and can be employed for living cell fluorescent imaging with high brightness. It also can be used for specific subcellular organelle imaging through immunofluorescence labeling. Furthermore, the PFNT Pdot demonstrates much better photostability for long-time cell fluorescence imaging than commercial red dyes. The high performances of PFNT Pdot make it a promising fluorescent probe for practical bioapplications.  相似文献   

18.
以萘酰亚胺结构为荧光发色团,设计开发了一种含C=C双键的、具有分子内电荷转移(ICT)效应的新型水溶性优化的次氯酸荧光探针3-(2-氰基丙烯酸乙酯基)-4-羟基-N-正丙基-1,8-萘酰亚胺(NAEC).添加次氯酸后,探针分子NAEC中的C=C双键被氧化,生成醛基,探针NAEC原有的ICT效应被破坏,产生荧光信号.经核磁、质谱、荧光发射光谱和UV-Vis吸收光谱对其结构和检测性能进行了研究.结果表明,在pH=7.4的N,N-二甲基甲酰胺(DMF)/磷酸缓冲盐溶液(PBS)(V∶V=1∶19)缓冲体系中,探针NAEC可在10s内完成对次氯酸的检测,荧光分析检测限为2.4nmol/L,斯托克斯位移为100nm;探针NAEC显示出较强的抗干扰性,能在其他活性氧、小分子生物硫醇及常见阴离子等22种干扰物存在下完成次氯酸的专一检测.同时,该探针分子的膜透性与生物相容性良好,具备较好的活体内源性ClO-荧光成像能力,在生物检测及环境监控等领域具有良好的应用前景.  相似文献   

19.
A novel fluorescent calcium indicator with a 490/582 nm ratiometric emission has been designed and synthesized.The indicator exhibits a highly selective ratiometric emission response to Ca2+ over other metal cations and a large Stokes shift of 202 nm.Moreover,its practical cell imaging capability for intracellular Ca2+ in the resting- and dynamic-state has been demonstrated in human umbilical vein endothelial cells using a confocal laser scanning microscope.  相似文献   

20.
BACKGROUND: Ratio imaging has received intensive attention in the past few decades. The growing potential of ratio imaging is significantly limited, however, by the lack of appropriate fluorescent probes, for acidic organelles in particular. The classic fluorescent dyes (such as fluoresceins, rhodamines and coumarins) are not suitable for studying acidic organelles (such as lysosomes) because their fluorescence is significantly decreased under neutral or acidic conditions. This has motivated us to develop probes that can be used in ratio imaging that are strongly fluorescent even in acidic media. RESULTS: The compound 2-(4-pyridyl)-5-((4-(2-dimethylaminoethyl-aminocarbamoyl) methoxy)phenyl)oxazole (PDMPO) was prepared and characterized as a new acidotropic dual-excitation and dual-emission pH indicator. It emits intense yellow fluorescence at lower pH and gives intense blue fluorescence at higher pH. This unique pH-dependent fluorescence property was readily explored to selectively stain lysosomes and to determine the pH of the organelle in an emission-ratio-imaging mode. PDMPO is selectively localized to lysosomes and exhibits a pH-dependent dual excitation and emission. CONCLUSIONS: PDMPO selectively labels acidic organelles (such as lysosomes) of live cells and the two distinct emission peaks can be used to monitor the pH fluctuations of live cells in ratio measurements. Additionally, the very large Stokes shift and excellent photostability of PDMPO make the compound an ideal fluorescent acidotropic probe. The unique fluorescence properties of PDMPO might give researchers a new tool with which to study acidic organelles of live cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号