首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An LC–MS/MS method with internal standard tolfenamic acid for determining diclofenac sodium (DCF) in dairy cow plasma was developed and validated. Samples were processed with protein precipitation by cold formic acid–acetonitrile. Determination of DCF was performed using LC–ESI+–MS/MS with the matrix‐matched calibration curve. The results showed that the method was sensitive (LOD 2 ng mL?1, LOQ 5 ng mL?1), accurate (97.60 ± 5.64%), precise (<10%) and linear in the range of 5–10,000 ng mL?1. A single intravenous (i.v.) or intramuscular (i.m.) administration of 5% diclofenac sodium injection at a dose of 2.2 mg kg?1 was performed in six healthy dairy cows according to a two‐period crossover design. The main pharmacokinetic (PK) parameters after a single i.v. administration were as follows: t1/2β, 4.52 ± 1.71 h; AUC, 77.79 ± 16.76 h μg mL?1; mean residence time, 5.16 ± 1.11 h. The main PK parameters after a single i.m. administration were as follows: Tmax, 2.38 ± 1.19 h; Cmax, 7.46 ± 1.85 μg mL?1; t1/2β, 9.46 ± 2.86 h; AUC 67.57 ± 13.07 h μg mL?1. The absolute bioavailability was 87.37 ± 5.96%. The results showed that the diclofenac sodium injection had PK characteristics of rapid absorption and slow elimination, and high peak concentration and bioavailability in dairy cows, and that the recommended clinical dosage of diclofenac sodium injection is 2.2 mg kg?1.  相似文献   

2.
Chemicals are widely used in aquaculture and one of the main recipients of these analytes is the aquatic environment. The aim of this work was to develop and validate a simple and sensitive method for the determination of multiclass chemotherapeutic agents in farmed fish and shellfish using matrix solid‐phase dispersion and liquid chromatography‐tandem mass spectrometry. Residues of azamethiphos, three avermectins, two carbamates, and two benzoylureas were extracted from samples using silica gel as clean‐up adsorbent and 0.5% acetic acid in acetonitrile as elution solvent. The extraction conditions were investigated and optimized using an experimental design. Mass spectrometry detection was carried out in positive electrospray ionization mode with multiple‐reaction monitoring scan (except for benzoylurea family). Matrix‐matched standards were used for the drugs quantification. Good linearity (R2 ≥ 0.996) was observed in the range of 5–500 μg kg?1. Limits of detection were in the range of 1.5–3.7 μg kg?1. Recoveries from salmon samples spiked with veterinary drugs were in the range 84.9–118%. Precision was satisfactory since relative standard deviations were lower than 10.6%. The method can be successfully applied for the analysis of fish and shellfish from aquaculture.  相似文献   

3.
An analytical method for the determination of both sulfadiazine (SDZ) and trimethoprim (TMP), and also N4-acetyl-sulfadiazine (AcSDZ), the main metabolite of SDZ, in fish muscle plus skin has been developed and validated. Dapsone was used as internal standard. The method involves extraction of the analytes from fish tissue by pressurized liquid extraction using water as extractant. Sample cleanup was carried out by solid phase extraction using Abselut Nexus cartridges. Target analytes were quantitatively determined by liquid–chromatography mass spectrometry using single ion monitoring. The developed method was validated according to the European Union requirements (decision 2002/657/EC). The limit of detection for SDZ and AcSDZ was 3.0 and 2.5 µg kg?1 for TMP. The limit of quantification (LOQ) was 10 µg kg?1 for SDZ and AcSDZ and 7.5 µg kg?1 for TMP. The recovery experiments carried out included the concentration levels of 0.5, 1 and 1.5 times the MRLs for SDZ and TMP. Concentration levels for AcSDZ were the same as SDZ. The values obtained were higher than 92.0% with coefficient of variation (CV, %) below 8.6%. The precision of the method, calculated as CV (%), ranged from 0.2 to 6.8% and from 0.8 to 8.9% for intra–day and inter–day analysis, respectively. Decision limit (CCα) was calculated as 104.3, 53.7 and 105.3 µg kg?1 for SDZ, TMP and AcSDZ, respectively. Detection capability (CCβ) was calculated as 110.0, 58.8 and 109.7 µg kg?1 for SDZ, TMP and AcSDZ, respectively. “Matrix effect” and “relative matrix effect” were also evaluated. The method was used for the analysis of fish samples purchased from local markets.  相似文献   

4.
Furazolidone is a broad‐spectrum antibiotic that is frequently used in aquaculture on account of its excellent antibacterial properties. In this study, both the enzyme‐linked immunosorbent assay (ELISA) and high‐performance liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) methods were used to analyze the content of residual 3‐amino‐2‐oxazolidinone (AOZ), a metabolite of furazolidone in Tilapia tissue. Homogenized fish samples were spiked with various amounts of AOZ, and following combined acid‐hydrolysis and derivatization of the homogenized tissue with 2‐NBA (2‐nitrobenzaldehyde), sample clean‐up was performed and the derived 2‐nitrophenylmethylene‐3‐amino‐2‐oxazolidinone (NPAOZ) was analyzed. Using the LC‐MS/MS method, a linear correlation between measured concentration Y and spiked concentration × was observed: Y = 0.4518X ? 0.0166, R2 = 0.9972. The linear equation for the ELISA method was Y = 0.9322X + 0.5168, R2 = 0.9066. These results demonstrated that the ELISA method might overestimate the residual AOZ content at low concentrations. The detection limit and recovery of the known addition were 0.05 μg kg?1a and 108% for the LC‐MS/MS method and 0.31 μg kg?1 and 305% for the ELISA method, respectively.  相似文献   

5.
A simple, fast and low‐cost extraction method with high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) determination was developed on sulfonamide antibiotics (SAs) in fish tissue. Magnetic separation was first introduced into the rapid sample preparation procedure combined with acetonitrile extraction for the analysis of SAs. Partitioning was rapidly achieved between acetonitrile solution and solid matrix by applying an external magnetic field. Acetonitrile solution was collected and concentrated under a nitrogen stream. The residue was redissolved with 1‰ formic acid aqueous solution and defatted with n‐hexane before analysis. The recoveries of SAs were in the range of 74.87–104.74%, with relative standard deviations <13%. The limits of quantification and the limits of detection for SAs ranged from 5.0 to 25.0 μg kg?1 and from 2.5 to 10.0 μg kg?1, respectively. The presented extraction method proved to be a rapid method which only took 20 min for one sample preparation procedure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A simple LC–MS/MS method facilitated by salting‐out assisted liquid–liquid extraction (SALLE) was applied to simultaneously investigate the pharmacokinetics of trans‐ resveratrol (Res) and its major glucuronide and sulfate conjugates in rat plasma. Acetonitrile–methanol (80:20, v /v) and ammonium acetate (10 mol L−1) were used as extractant and salting‐out reagent to locate the target analytes in the supernatant after the aqueous and organic phase stratification, then the analytes were determined via gradient elution by LC–MS/MS in negative mode in a single run. The analytical method was validated with good selectivity, acceptable accuracy (>85%) and low variation of precision (<15%). SALLE showed better extraction efficiency of target glucuronide and sulfate conjugates (>80%). The method was successfully applied to determine Res and its four conjugated metabolites in rat after Res administration (intragastric, 50 mg kg−1; intravenous, 10 mg kg−1). The systemic exposures to Res conjugates were much higher than those to Res (AUC0–t , i.v., 7.43 μm h; p.o., 8.31 μm h); Res‐3‐O‐β ‐d ‐glucuronide was the major metabolite (AUC0–t , i.v., 66.1 μm h; p.o., 333.4 μm h). The bioavailability of Res was estimated to be ~22.4%. The reproducible SALLE method simplified the sample preparation, drastically improved the accuracy of the concomitant assay and gave full consideration of extraction recovery to each target analyte in bio‐samples.  相似文献   

7.
Surfactant‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection has been developed for the simultaneous preconcentration and determination of lorazepam and nitrazepam in biological fluids. In this study, an ionic surfactant (cetyltrimethyl ammonium bromide) was used as an emulsifier. The predominant parameters affecting extraction efficiency such as the type and volume of extraction solvent, the type and concentration of surfactant, sample pH, and the concentration of salt added to the sample were investigated and opted. Under the optimum conditions (extraction solvent and its volume, 1‐octanol, 70 μL; surfactant and its concentration, 1 mL of ultra‐pure water containing 2 mmol L?1 cetyltrimethyl ammonium bromide; sample pH = 9 and salt content of 10% NaCl w/v), the preconcentration factors were obtained in the range of 202–241 and 246–265 for nitrazepam and lorazepam, respectively. The limits of quantification for both drugs were 5 μg L?1 in water sample and 10 μg L?1 in biological fluids with R2 values higher than 0.993. The suitability of the proposed method was successfully confirmed by the extraction and determination of the target drugs in human urine and plasma samples in the range of microgram per liter.  相似文献   

8.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

9.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

10.
A simple and economical method for the determination of eight polybrominated diphenyl ethers (BDE‐28, 47, 99, 100,153,154,183, and 209) in water was developed. This method involves the use of ultrasound‐assisted dispersive liquid–liquid microextraction combined with GC‐MS in negative chemical ionization mode. Various parameters affecting the extraction efficiency, including the type and volume of extraction and dispersive solvents, salt concentration, extraction time, and ultrasonic time, were investigated. A volume of 1.0 mL of acetone (dispersive solvent) containing 10 μL tetrachloroethylene (extraction solvent) was injected into 5.0 mL of water samples and then emulsified by ultrasound for 2.0 min to produce the cloudy solution. Under the optimal condition, the enrichment factors for the eight PBDEs were varied from 845‐ to 1050‐folds. Good linearity was observed in the range of 1.0–200 ng L?1 for BDE‐28, 47, 99, and 100; 5.0–200 ng L?1 for BDE‐153, 154, and 183; and 5.0–500 ng L?1 for BDE‐209. The RSD values were in the range of 2.5–8.4% (n = 5) and the LODs ranged from 0.40 to 2.15 ng L?1 (S/N = 3). The developed method was applied for the determination of eight BPDEs in the river and lake water samples, and the mean recoveries at spiking levels of 5.0 and 50.0 ng L?1 were in the range of 70.6–105.1%.  相似文献   

11.
In this work, a fast, easy, and efficient dispersive liquid–liquid microextraction method based on solidification of floating organic drop followed by high‐performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1‐dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min?1. The linear response (r2 = 0.997) was obtained in the range of 0.013–10.0 μg mL?1 with a limit of detection of 4.0 ng mL?1 and relative standard deviations of less than 5.0 % (n = 6).  相似文献   

12.
A multiresidue and multiclass method for the simultaneous determination of more than 350 compounds including pesticides, biopesticides and veterinary drugs in different meat matrices (beef, pork and chicken) by ultra‐high performance liquid chromatography coupled to Orbitrap MS has been developed. In the present study, the determination of fragments was accomplished as an essential tool for a reliable identification of compounds using high resolution MS. To obtain these fragments, different strategies have been carried out in order to ensure an appropriate fragment assignment and identification. The analytical method is suitable for qualitative analysis, and it was also evaluated for quantitative analysis. Generic extraction conditions were optimized, obtaining adequate recovery and precision values for most of the studied analytes (>290). The limits of detection ranged from 2 to 16 µg kg?1. Limits of quantification were 10 µg kg?1 with the exception of few compounds with a higher value (50 or 100 µg kg?1). Limits of identification were also established, and they ranged from 2 to 150 µg kg?1. This method was applied to the analysis of 18 meat samples and some veterinary drugs as enrofloxacin and sulfadiazine were detected and further identified/quantified (with triple quadrupole) in two different samples at 33 µg kg?1 and trace levels, respectively. No pesticides were detected in the analyzed samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, GC–MS‐ and MEKC‐based methods for determination of caffeine (CAF) in preworkout supplements were developed and validated. The proposed protocols utilized minimal sample preparation (simple dilution and syringe filtration). The developed methods achieved satisfactory validation parameters, i.e. good linearity (R2 > 0.9988 and R2 > 0.9985 for GC–MS‐ and MEKC‐based method, respectively), satisfactory intra‐ and interaccuracy (within 92.6–100.7% for method utilizing GC–MS and 92.1–110.3% for protocol based on MEKC) and precision (CV < 15.9% and CV < 6.3% for GC–MS‐ and MEKC‐based method, respectively) and recovery (within 100.1–100.8% for method utilizing GC–MS and 101.5–106.2% for protocol based on MEKC). The LOD was 0.03 and 3 μg/mL for method utilizing GC–MS and MEKC, respectively. The CAF concentrations determined by GC–MS‐ and MEKC‐based methods were found to be in the range of 8.53–11.23 and 8.20–11.61 μg/mL, respectively. Taking into consideration information on the labels, the investigated supplements were found to contain from 110.0 to 167.3% of the declared CAF content, which confirmed the literature reports on incompatibility of the declared product compositions with real ones. Nevertheless, the consumption of examined supplements as recommended by producers did not lead to exceeding the CAF safe limit of 400 mg per day. Additionally, the MEKC‐based method allowed for detection and identification of vitamin B3 and B6 in all of the investigated supplement samples, which demonstrated that MEKC‐based protocols may be an appropriate assays for simultaneous determination of CAF and vitamins.  相似文献   

14.
Dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME–SFO) was for the first time combined with field‐amplified sample injection (FASI) in CE to determine four β2‐agonists (cimbuterol, clenbuterol, mabuterol, and mapenterol) in bovine urine. Optimum BGE consisted of 20 mM borate buffer and 0.1 mM SDS. Using salting‐out extraction, β2‐agonists were extracted into ACN that was then used as the disperser solvent in DLLME–SFO. Optimum DLLME–SFO conditions were: 1.0 mL ACN, 50 μL 1‐undecanol (extraction solvent), total extraction time 1.5 min, no salt addition. Back extraction into an aqueous solution (pH 2.0) facilitated direct injection of β2‐agonists into CE. Compared to conventional CZE, DLLME–SFO–FASI–CE achieved sensitivity enhancement factors of 41–1046 resulting in LODs in the range of 1.80–37.0 μg L?1. Linear dynamic ranges of 0.15–10.0 mg L?1 for cimbuterol and 15–1000 μg L?1 for the other analytes were obtained with coefficients of determination (R2) ≥ 0.9901 and RSD% ≤5.5 (n = 5). Finally, the applicability of the proposed method was successfully confirmed by determination of the four β2‐agonists in spiked bovine urine samples and accuracy higher than 96.0% was obtained.  相似文献   

15.
An accurate, rapid and effective method was established for determination of eugenol in plasma, muscle, skin, liver, kidney and gill of fish using gas chromatography–ion trap tandem mass spectrometry. Samples of muscle, skin, liver, kidney and gill were prepared using the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) procedure, and a plasma sample was prepared by a liquid–liquid extraction procedure. Eugenol was monitored in <7 min using an electron‐ionization source in MS/MS mode and quantified by an internal standard of eugenol‐d3. The limit of detection was 5.0 μg/kg, and the limit of quantification was 10.0 μg/kg. The calibration curve was linear in the range of 5–1000 μg/L (R2 = 0.9996). Intra‐ and inter‐day precisions of eugenol expressed as relative standard deviation were within 9.74%, and the accuracy exhibited a relative error ranging from −2.20 to 8.89%. The developed method was successfully used to study the elimination regularity of eugenol in mandarin fish.  相似文献   

16.
An LC–MS/MS method was developed and validated for the simultaneous quantification of edaravone and taurine in beagle plasma. The plasma sample was deproteinized using acetonitrile containing formic acid. Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 μm) column, with a gradient of water (containing 0.03% formic acid) and methanol as the mobile phase at a flow rate of 0.3 mL/min. The analyte detection was carried out in multiple reaction monitoring mode and the optimized precursor‐to‐product transitions of m/z [M+H]+ 175.1 → 133.0 (edaravone), m/z [M+H]+ 189.1 → 147.0 (3‐methyl‐1‐p‐tolyl‐5‐pyrazolone, internal standard, IS), m/z [M–H]? 124.1→80.0 (taurine), and m/z [M–H]? 172.0 → 80.0 (sulfanilic acid, IS) were employed to quantify edaravone, taurine, and their corresponding ISs, respectively. The LOD and the lower LOQ were 0.01 and 0.05 μg/mL for edaravone and 0.66 and 2 μg/mL for taurine, respectively. The calibration curves of these two analytes demonstrated good linearity (r > 0.99). All the validation data including the specificity, precision, recovery, and stability conformed to the acceptable requirements. This validated method has successfully been applied in the pharmacokinetic study of edaravone and taurine mixture in beagle dogs.  相似文献   

17.
A multi‐mycotoxin method was developed for the simultaneous determination of trichothecenes (nivalenol, deoxynivalenol, 3‐acetyldeoxynivalenol, 15‐acetyldeoxynivalenol, neosolaniol, fusarenon‐X, diacetoxyscirpenol, HT‐2 toxin, T‐2 toxin), aflatoxins (aflatoxin‐B1, aflatoxin‐B2, aflatoxin‐G1 and aflatoxin‐G2), Alternaria toxins (alternariol, alternariol methyl ether and altenuene), fumonisins (fumonisin‐B1, fumonisin‐B2 and fumonisin‐B3), ochratoxin A, zearalenone, beauvericin and sterigmatocystin in sweet pepper. Sweet pepper was extracted with ethyl acetate/formic acid (99:1, v/v). After splitting up the extract, two‐thirds of the extract was cleaned up using an aminopropyl column followed by an octadecyl column. The remaining part was cleaned up using a strong anion‐exchange column. After recombination of both cleaned parts of the sample extract, the combined solvents were evaporated and the residue was dissolved in mobile phase; 20 µL was injected into the chromatographic system, so only one run was used to separate and detect the mycotoxins in positive electrospray ionization using selected reaction monitoring. The samples were analyzed with a Micromass Quattro Micro triple quadrupole mass spectrometer (Waters, Milford, MA, USA). The mobile phase consisted of variable mixtures of water and methanol, 1% acetic acid and 5 mM ammonium acetate. The limits of detection of the multi‐mycotoxin method varied from 0.32 µg.kg?1 to 42.48 µg.kg?1. The multi‐mycotoxin liquid chromatography/tandem mass spectrometry (LC/MS/MS) method fulfilled the method performance criteria required by the Commission Regulation (EC) No 401/2006. Sweet peppers inoculated by Fusarium species were analyzed using the developed method. Beauvericin (9–484 µg.kg?1) and fumonisins (fumonisin‐B1 up to 4330 µg.kg?1, fumonisin‐B2 up to 4900 µg.kg?1, and fumonisin‐B3 up to 299 µg.kg?1) were detected. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Analyses of fish and other environmental samples (clams, macrophytes, sediments and waters) from areas upstream and downstream from two alkyllead manufactures beside the St Lawrence and St Clair Rivers, Ontario, show a clear indication of elevated alkyllead levels in samples near the industries. Most species of fish contained alkyllead compounds with tetraethyllead and triethyllead as the predominant forms. Most fish from the contaminated areas contained 50–75% of total lead as alkylleads. Carp, yellow perch and white sucker were generally the most contaminated species while pike, alewife and rock bass were the least contaminated. Average alkyllead levels varied from year to year but declined steadily after 1981. For example, the geometric mean of alkyllead compounds in carp from the St Lawrence River decreased from 4207 μg kg?1 in 1981 to 2000 μg kg?1 in 1982 and to 49 μg kg?1 in 1987, reflecting the reduction of alkylleads in the effluents and the closure of one of the manufactures in 1985. Alkyllead levels were consistently lower in muscle and carcass samples in comparison with whole fish containing fatty intestines. However, muscle levels were generally equal to carcass levels. The concentrations of alkyllead compounds were generally low in clams, macrophytes, sediments and waters except from the immediate vicinity of the manufactures' final effluent discharges.  相似文献   

19.
This paper describes a GC–MS method for the determination of naproxen in human plasma. Naproxen and internal standard ibuprofen were extracted from plasma using a liquid–liquid extraction method. Derivatization was carried out using N‐methyl‐N‐(trimethylsilyl)trifluoroacetamide. The calibration curve was linear between the concentration range of 0.10–5.0 μg/mL. Intra‐ and interday precision values for naproxen in plasma were <5.14, and accuracy (relative error) was better than 4.67%. The extraction recoveries of naproxen from human plasma were between 93.0 and 98.9%. The LOD and LOQ of naproxen were 0.03 and 0.10 μg/mL, respectively. Also, this assay was applied to determine the pharmacokinetic parameters of naproxen in six healthy Turkish volunteers who had been given 220 mg naproxen.  相似文献   

20.
An analytical multiclass, multi-residue method for the determination of antibiotics in aquaculture products was developed and validated. A fast, cheap, and straightforward extraction procedure followed by liquid chromatography-tandem mass spectrometry analysis was proposed. This method covers 32 antibiotics of different classes, which are frequently used in aquaculture. Three different extraction procedures were compared, and the extraction with acetonitrile (0.1 vol. % formic acid) showed the best results. The selected extraction procedure was validated at four different fortification levels (10 μg kg?1, 25 μg kg?1, 50 μg kg?1, and 100 μg kg?1). Recoveries of the tested antibiotics ranged from 70 % to 120 %, with the relative standard deviation (RSD) of triplicates lower than 20 %. The limits of quantification (LOQ) ranged from 0.062 μg kg?1 to 4.6 μg kg?1, allowing for the analysis of trace levels of these antibiotics in aquaculture products. The method was applied to the analysis of selected antibiotics in fish and shrimp meat available in the Czech market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号