首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Classical molecular dynamics (MD) simulations were performed to determine the hydrated morphology and hydronium ion diffusion coefficients in two different perfluorosulfonic acid (PFSA) membranes as functions of water content. The structural and transport properties of 1143 equivalent weight (EW) Nafion, with its relatively long perfluoroether side chains, are compared to the short-side-chain (SSC) PFSA ionomer at an EW of 977. The separation of the side chains was kept uniform in both ionomers consisting of -(CF 2) 15- units in the backbone, and the degree of hydration was varied from 5 to 20 weight % water. The MD simulations indicated that the distribution of water clusters is more dispersed in the SSC ionomer, which leads to a more connected water-channel network at the low water contents. This suggests that the SSC ionomer may be more inclined to form sample-spanning aqueous domains through which transport of water and protons may occur. The diffusion coefficients for both hydronium ions and water molecules were calculated at hydration levels of 4.4, 6.4, 9.6, and 12.8 H 2O/SO 3H for each ionomer. When compared to experimental proton diffusion coefficients, this suggests that as the water content is increased the contribution of proton hopping to the overall proton diffusion increases.  相似文献   

2.
An atomistic MD simulation method has been developed to study the electroosmotic drag in the hydrated perfluorosulfonic acid polymer. The transport characteristics of the hydroniums and water molecules are evaluated from their velocity distribution functions with an electric field applied. It is shown that the microstructure of the hydrated perfluorosulfonic acid polymer is not perturbed significantly by the electric field up to 2 V/microm, and the velocity distribution functions obey the peak shifted Maxwell velocity distribution functions. The evaluated peak shifting velocities are only about 1% of the average thermal motion. The hydronium flow and water flow are evaluated from the average transport velocities or the peak shifting velocities. The electroosmotic drag coefficients from the MD simulations are in good correspondence with the experimental values. It is also shown that the electroosmotic drag coefficient has no or weak temperature dependence.  相似文献   

3.
In this work, nonequilibrium molecular dynamics (MD) simulations were performed to investigate uniform liquid argon flow past a carbon nanotube. In the simulation, nanotubes were modeled as rigid cylinders of carbon atoms. Both argon-argon and argon-carbon interactions were calculated based on Lennard-Jones potential. Simulated drag coefficients were compared with (i) published empirical equation which was based on experiments conducted with macroscale cylinders and (ii) finite element (FE) analyses based on Navier-Stokes equation for flow past a circular cylinder using the same dimensionless parameters used in MD simulations. Results show that classical continuum mechanics cannot be used to calculate drag on a nanotube. In slow flows, the drag coefficients on a single-walled nanotube calculated from MD simulations were larger than those from the empirical equation or FE analysis. The difference increased as the flow velocity decreased. For higher velocity flows, slippage on the surface of the nanotube was identified which resulted in lower drag coefficient from MD simulation. This explains why the drag coefficient from MD dropped faster than those from the empirical equation or FE simulation as the flow velocity increased. It was also found that the drag forces are almost equal for single- and double-walled nanotubes with the same outer diameter, implying that inner tubes do not interact with fluid molecules.  相似文献   

4.
An explanation for the superior proton conductivity of low equivalent weight (EW) short-side-chain (SSC) perfluorosulfonic acid membranes is pursued through the determination of hydrated morphology and hydronium ion diffusion coefficients using classical molecular dynamics (MD) simulations. A unique force field set for the SSC ionomer was derived from torsion profiles determined from ab initio electronic structure calculations of an oligomeric fragment consisting of two side chains. MD simulations were performed on a system consisting of a single macromolecule of the polymer (EW of 580) with the general formula F3C-[CF(OCF2CF2SO3H)-(CF2)7]40-CF3 at hydration levels corresponding to 3, 6, and 13 water molecules per sulfonic acid group. Examination of the hydrated morphology indicates the formation of hydrogen bond "bridges" between distant sulfonate groups without significant bending of the polytetrafluoroethylene backbone. Pair correlation functions of the system identify the presence of ion cages consisting of hydronium ions hydrogen-bonded to three sulfonate groups at the lowest water content. Such structures exhibit very low S-OH3+ separations, well below 4 A and severely inhibit vehicular diffusion of the protons. The number of sulfonate groups in the first solvation shell of a given hydronium ion correlates well with the differences between Nafion and the SSC polymer (Hyflon). The calculated hydronium ion diffusion coefficients of 2.84 x 10-7, 1.36 x 10-6, and 3.47 x 10-6 cm2/s for water contents of 3, 6, and 13, respectively, show only good agreement to experimentally measured values at the lowest water content, underscoring the increasing contribution of proton shuttling or hopping at the higher hydration levels. At the highest water content, the vehicular diffusion accounts for only about 1/5 of the total proton transport similar to that observed in Nafion.  相似文献   

5.
The effect of the magnetic field on the electrokinetic transport coefficients (permeability coefficient and electro-osmotic permeability coefficient) of water and aqueous solutions of mercuric chloride and glycine through a sintered disc impregnated with cellulose acetate at different potentials, concentrations, and magnetic fields varying up to 21 kg/cm2 are reported at 308.15 K. The phenomenological coefficients characterizing the electro-osmotic flow and the membrane characteristics are also estimated for the various solutions with the object of determining the efficiencies of electrokinetic energy conversion and ζ potential. The effect of magnetic field has been attributed to the molecular orientation of dipoles in solutions and to the change in the structure of the membrane.  相似文献   

6.
Effects of nanoscale confinement and partial charges that stem from quantum calculations are investigated in silica slit channels filled with 1 M KCl at the point of zero charge by using a hierarchical multiscale simulation methodology. Partial charges of both bulk and surface atoms from ab initio quantum calculations that take into account bond polarization and electronegativity are used in molecular dynamics (MD) simulations to obtain ion and water concentration profiles for channel widths of 1.1, 2.1, 2.75, and 4.1 nm. The interfacial electron density profiles of simulations matched well with that of recent X-ray reflectivity experiments. By simulating corresponding channels with no partial charges, it was observed that the partial charges affect the concentration profiles and transport properties such as diffusion coefficients and mobilities up to a distance of about 3 sigma(O)(-)(O) from the surface. Both in uncharged and partially charged cases, oscillations in concentration profiles of K(+) and Cl(-) ions give rise to an electro-osmotic flow in the presence of an external electric field, indicating the presence of an electric double layer at net zero surface charge, contrary to the expectations from classical continuum theory. I-V curves in a channel-bath system using ionic mobilities from MD simulations were significantly different for channels with and without partial charges for channel widths less than 4.1 nm.  相似文献   

7.
The electroosmotic drag coefficient of water molecules in hydrated sodium perfluorosulfonate electrolyte polymer is evaluated on the basis of the velocity distribution functions of the sodium cations and water molecules with an electric field applied using molecular dynamics simulations. The simulation results indicate that both velocity distribution functions of water molecules and of sodium cations agree well with the classic Maxwellian velocity distribution functions when there is no electric field applied. If an electric field is applied, the distribution functions of velocity component in directions perpendicular to the applied electric field still agree with the Maxwellian velocity distribution functions but with different temperature parameters. In the direction of the applied electric field, the electric drag causes the velocity distribution function to deviate from the Maxwellian velocity distribution function; however, to obey the peak shifted Maxwellian distribution function. The peak shifting velocities coincide with the average transport velocities induced by the electric field, and could be applied to the evaluation of the electroosmotic drag coefficient of water. By evaluation of the transport velocities of water molecules in the first coordination shells of sodium cations, sulfonate anion groups, and in the bulk, it is clearly shown that the water molecules in the first coordination shell of sodium cations are the major contribution to the electroosmotic drag and momentum transfer from water molecules within the first coordination shell to the other water molecules also contributes to the electroosmotic drag. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

8.
The effects of water nanochannel diameter on proton transport pathways and properties have been studied using reactive molecular dynamics simulations. The proton distributions and diffusivities have been evaluated using the cylinder model of water domains at various diameters that is the most typical proposed morphological model in proton‐exchange membranes. The proton distributions are analyzed to clarify proton pathways by classifying the water channel into two regions in parallel: an inner channel (free water) and an outer channel (bound water). For all the water contents, the nonmonotonic trends that show a peak at a certain diameter are found to be observed in the proton diffusivity, which is dominated by the proton diffusivity in the free water region and has a strong correlation with the proton distribution that is controlled by the balance between the volume fraction of free water and the surface density of sulfonate groups. The electroosmotic drag coefficients are found to increase monotonically with increasing channel diameter as a result of the increase in the volume fraction of free water. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 867–878  相似文献   

9.
We study the mechanism of proton transfer (PT) between the photoacid (8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS)) and the base acetate in aqueous solution using femtosecond vibrational spectroscopy. By probing the vibrational resonances of the photoacid, the accepting base, and the hydrated proton we find that intermolecular PT in this model system involves the transfer of the proton across several water molecules linking the donor-acceptor pair by hydrogen bonds (H-bonds). We find that at high base concentration the rate of PT is not determined by the mutual diffusion of acid and base but rather by the rate of Grotthuss-like conduction of the proton between molecules. This long-range PT requires an activated solvent configuration to facilitate the charge transfer.  相似文献   

10.
An extensive computer simulation study is presented for the self-diffusion coefficient, the shear viscosity, and the thermal conductivity of Mie(14,7) fluids. The time-correlation function formalism of Green-Kubo is utilized in conjunction with molecular dynamics (MD) simulations. In addition to molecular simulations, the results of a recent study [A. Eskandari Nasrabad, J. Chem. Phys. 128, 154514 (2008)] for the mean free volume are applied to calculate the self-diffusion coefficients within a free volume theory framework. A detailed comparison between the MD simulation and free volume theory results for the diffusion coefficient is given. The density fluctuation theory of shear viscosity is used to compute the shear viscosity and the results are compared to those from MD simulations. The density and temperature dependences of different time-correlation functions and transport coefficients are studied and discussed.  相似文献   

11.
A basic issue in nanoscale systems is whether large-scale behavior occurs or not. At and above the mesoscale, the water-silica interaction is known to have large effects, e.g., the geological importance of hydrolytic weakening. Here, we show that water not only substantially weakens a silica nanochain that has been the focus of much recent research but also leads to novel proton conduction. The SiO2 chain consists of a string of orthogonal (planes alternating vertically and horizontally) two-membered rings. We treat two cases of adjacent water to understand both local and collective motion in the system. The first is two water molecules, the second is a water monolayer film that coats the entire chain. Structure, charge separation, stress dependent bond breaking and formation, and proton conduction are discussed based on results obtained at the room temperature. The simulations have been performed using both first-principles molecular dynamics and a novel multiscale quantum-classical software system.  相似文献   

12.
The stability of lithium atoms in alpha-rhombohedral boron was investigated by first-principles calculations of total energies and molecular dynamics (MD) simulations. In the case of a low concentration (1.03 at. %), Li at the center of the icosahedral B12 site (the I-site) had a negative binding energy, which suggests Li at the I-site is unstable. However, MD simulations at temperatures below 750 K indicated that Li is still confined in the B12 cage under these conditions, which means Li at the I-site is metastable. Over 800 K, Li began to move away from the B12 site and settled at the tetrahedral site (the T-site) or at the octahedral site (the O-site). Li at the T-site also had a negative binding energy, but MD simulations indicated it was metastable up to 1400 K and did not move to other sites. Li at the O-site was energetically the most favorable, having a positive binding energy. In the case of a high concentration (7.69 at. %), the I-site changed to an unstable saddle point. At this concentration, the T-site was metastable and the O-site became the most stable. In MD simulations at 1400 K, Li atoms at the O-site never jumped to other sites regardless of concentration. Considering these facts, the diffusion coefficient of Li in alpha-rhombohedral boron would have to be very small below 1400 K.  相似文献   

13.
Triflic acid is a functional group of perflourosulfonated polymer electrolyte membranes where the sulfonate group is responsible for proton conduction. However, even at extremely low hydration, triflic acid exists as a triflate ion. In this work, we have developed a force-field for triflic acid and triflate ion by deriving force-field parameters using ab initio calculations and incorporated these parameters with the Optimized Potentials for Liquid Simulations - All Atom (OPLS-AA) force-field. We have employed classical molecular dynamics (MD) simulations with the developed force field to characterize structural and dynamical properties of triflic acid (270-450 K) and triflate ion/water mixtures (300 K). The radial distribution functions (RDFs) show the hydrophobic nature of CF(3) group and presence of strong hydrogen bonding in triflic acid and temperature has an insignificant effect. Results from our MD simulations show that the diffusion of triflic acid increases with temperature. The RDFs from triflate ion/water mixtures shows that increasing hydration causes water molecules to orient around the SO(3)(-) group of triflate ions, solvate the hydronium ions, and other water molecules. The diffusion of triflate ions, hydronium ion, and water molecules shows an increase with hydration. At λ = 1, the diffusion of triflate ion is 30 times lower than the diffusion of triflic acid due to the formation of stable triflate ion-hydronium ion complex. With increasing hydration, water molecules break the stability of triflate ion-hydronium ion complex leading to enhanced diffusion. The RDFs and diffusion coefficients of triflate ions, hydronium ions and water molecules resemble qualitatively the previous findings using per-fluorosulfonated membranes.  相似文献   

14.
The tetrameric M2 protein bundle of the influenza A virus is the proton channel responsible for the acidification of the viral interior, a key step in the infection cycle. Selective proton transport is achieved by successive protonation of the conserved histidine amino acids at position 37. A recent X-ray structure of the tetrameric transmembrane (TM) domain of the protein (residues 22-46) resolved several water clusters in the channel lumen, which suggest possible proton pathways to the His37 residues. To explore this hypothesis, we have carried out molecular dynamics (MD) simulations of a proton traveling towards the His37 side chains using MD with classical and quantum force fields. Diffusion through the first half of the channel to the "entry" water cluster near His37 may be hampered by significant kinetic barriers due to electrostatic repulsion. However, once in the entry cluster, a proton can move to one of the acceptor His37 in a nearly barrierless fashion, as evidenced both by MD simulations and a scan of the potential energy surface (PES). Water molecules of the entry cluster, although confined in the M2 pore and restricted in their motions, can conduct protons with a rate very similar to that of bulk water.  相似文献   

15.
The dependence of the water transport number on current density is examined for three membranes whose characteristics cover a wide spectrum: poly(vinylbenzenesulfonate), porous Vycor glass and cellulose. Experiments and theory show that non-linear volume—time plots in electro-osmotic experiments arise from displacements of the membrane in the electric field, and that reliable water transport numbers can be obtained at a given current density. When the current density is varied, experiments show that the observed water transport number can: (a) increase at low current densities because of osmotic flow superimposed on water transport by the electric field; (b) decrease at higher current densities because of accumulation of salt in the membrane; (c) decrease more at current densities near and above the limiting value because of an increased contribution of hydrogen and hydroxide ions to transport. These phenomena arise from a combination of diffusion films at both membrane—solution interfaces and from the dependence of counteflon and water transport numbers on external salt concentration.  相似文献   

16.
We investigate the transport properties of a model of a hydrated Na-Nafion membrane using molecular dynamics simulations. The system consists of several Nafion chains forming a pore with the water and ions inside. At low water content, the hydrophilic domain is not continuous and diffusion is very slow. The diffusion coefficient of both water and Na+ increases with increasing hydration (more strongly so for Na+). The simulations are in qualitative agreement with experimental results for similar systems. The diffusion coefficient is an average over the motion of ions or water molecules located in different environments. To better understand the role of the environment, we calculate the distribution of the residence times of the ion (or water) at different locations in the system. We discuss the transport mechanism in light of this information.  相似文献   

17.
Electro-osmotic pumping (EOP) theory and its characteristics (transport numbers, brine concentration, current density, current efficiency, electro-osmotic coefficients, etc.) of Selemion AMV and CMV ion-exchange membranes were studied. The brine concentration increased with increase in current density and feed water concentration. Current efficiency was nearly constant in a wide range of current densities and feed water concentrations. The water flow through the membranes also increased with increasing current density and feed water concentration. The increase in water flow increased the current efficiency significantly. Consequently, water flow through electrodialysis (ED) membranes had a positive effect on ED. Electro-osmotic coefficients decreased with increasing feed water concentration. Osmotic flow in EOP-ED decreased relative to the total flow with increasing current density while the electro-osmotic flow increased relative to the osmotic flow. Osmotic flow significantly contributes to the total water flow in EOP. Selemion AMV and CMV membranes performed well for salt concentration. A simple membrane potential measurement has been demonstrated to function reasonably satisfactorily to predict membrane performance for salt concentration.  相似文献   

18.
An advanced implicit solvent model of water–proton bath for protein simulations at constant pH is presented. The implicit water–proton bath model approximates the potential of mean force of a protein in water solvent in a presence of hydrogen ions. Accurate and fast computational implementation of the implicit water–proton bath model is developed using the continuum electrostatic Poisson equation model for calculation of ionization equilibrium and the corrected MSR6 generalized Born model for calculation of the electrostatic atom–atom interactions and forces. Molecular dynamics (MD) method for protein simulation in the potential of mean force of water–proton bath is developed and tested on three proteins. The model allows to run MD simulations of proteins at constant pH, to calculate pH‐dependent properties and free energies of protein conformations. The obtained results indicate that the developed implicit model of water–proton bath provides an efficient way to study thermodynamics of biomolecular systems as a function of pH, pH‐dependent ionization‐conformation coupling, and proton transfer events. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Tautomerism in the ground and excited states of 7-hydroxyquinoline (7HQ) was studied in different solvents using steady-state and lifetime spectroscopic measurements, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Equilibrium between the enol and the keto/zwitterion tautomers exists in 7HQ, which is solvent-dependent. Of the solvents used in this study, only in water does the absorbance spectrum of 7HQ show absorption from both the enol and zwitterion tautomers. In addition, in aqueous media, fluorescence is observed from the zwitterion tautomer only, which is attributed to self-quenching of the enol fluorescence by energy transfer to the ground-state zwitterion tautomer and energetically favorable excited-state proton transfer. Solvation of the hydrogen bonding sites of 7HQ was studied in binary mixtures of 1,4-dioxane and water, and three water molecules were estimated to connect the polar sites and induce intermolecular proton transfer. The results are confirmed by DFT calculations showing that three water molecules are the minimum number required to form a stable solvent wire. Mapping the water density around the polar sites using MD simulations shows well-defined hydrogen bonds around the amino and hydroxyl groups of the enol tautomer and slightly less well-defined hydrogen bonds for the zwitterion tautomer. The presence of three-member water wires connecting the polar centers in 7HQ is evident in the MD simulations. The results point to the unique spectral signatures of 7HQ in water, which make this molecule a potential probe to detect the presence of water in nanocavities of macromolecules.  相似文献   

20.
用分子动力学模拟方法研究外电场(简称电场)作用下水化聚全氟磺酸钾膜中水分子的电渗迁移运动,并分析探讨膜的结构与水分子的电渗迁移特性的关系.结果表明,无外加电场时水分子和K+的速度都服从麦克斯韦分布;施加适当电场时,水分子和K+在垂直电场方向上的速度分量仍服从麦克斯韦分布,但平行电场方向上的速度分量则服从峰值漂移的麦克斯韦分布.并且,峰值漂移速度可作为水分子和K+的平均迁移速度的近似值,从而计算得到水分子的电渗系数.结果还显示,K+第一配位层内平均含有约4.04个水分子,它们的平均迁移速度只有K+的57%.这部分水分子贡献的电渗迁移系数为总电渗迁移系数(2.97)的77%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号