首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以气相色谱为主要手段,配合Mossbauer波谱、X射线衍射等方法研究了草酸铁(Ⅲ)与硝酸钠在氢气氛中的固相反应,实验结果表明:240℃前两者不发生反应,草酸铁(Ⅲ)还原分解;260—320℃固相间发生强烈氧化还原反应,大量二氧化碳放出,并伴有少量氧和一氧化氮,380℃后,生成的亚硝酸钠与未反应的硝酸钠在铁(Ⅲ)化合物作用下,提前分解,同时铁(Ⅲ)化合物转化成γ-Fe_2O_3.  相似文献   

2.
采用气相色谱法,配合穆斯堡尔谱等其他手段研究了草酸铁与金属氯化物在氢气氛和氦气氛中的固相反应。实验结果表明,草酸高铁与氯化铜在180℃时发生氧化还原反应,与氯化亚锡在室温下发生固相还原反应,与碱金属氯化物不反应,但氯离子的存在明显提高了α—草酸亚铁的热稳定性且与氯化物中金属阳离子的价态有关,价态越高,作用越明显。  相似文献   

3.
用气相色谱法研究了草酸铁(Ⅲ)与路易氏碱在氢气氛和氦气氛中的固相反应。结果表明草酸铁与氢氧化钠在室温下明显发生固相反应,其产物随温度升高而变化。同时发现α-Fe对草酸钠有催化分解作用,与四硫化钾低于220°C时发生固相反应,生成KFeS2,但只有1/4草酸铁参加了固相反应,反应不完全,对固相反应的机制及反应气氛的影响也进行了探讨。  相似文献   

4.
本文研究了早酸铁(III)负载在HZSM-5和HY沸石上的性质和热分解,早酸铁(III)在沸石表面发生离解吸附,C2O[2-][4]与表面的Al配位,热分解时产生β峰,草酸铁(III)与HZSM-5沸石作用较弱,在氢气中500℃时的还原产物为α-Fe,而Fe2(C2O4)3-HY体系在氢气中500℃时除得到α-Fe外,还有少量高分散的零价铁和部分难以还原的铁离子。  相似文献   

5.
本文研究了草酸铁(Ⅲ)负载在 HZSM-5和 HY 沸石上的性质和热分解.草酸铁(Ⅲ)在沸石表面发生离解吸附,C_2O_4~(2-)与表面的 Al 配位,热分解时产生β峰.草酸铁(Ⅲ)与 HZSM-5沸石作用较弱,在氢气中500℃时的还原产物为α-Fe,而Fe_2(C_2O_4)_3—HY 体系在氢气中500℃时除得到α-Fe 外,还有少量高分散的零价铁和部分难以还原的铁离子.  相似文献   

6.
本文用气相色谱法跟踪热分解气相产物,配合穆斯堡尔谱检测固相产物,研究了活性炭负载的草酸铁(Ⅲ)和三草酸合铁(Ⅲ)酸钾在H_2中的热分解过程,比较了与相应纯盐的异同。发现活性炭对负载的铁(Ⅲ)的草酸配合物的性质和热分解过程有很大的影响,使其分解起始温度低于纯盐,产物在载体表面高度分散,Fe(Ⅱ)的还原困难。研究结果表明,载体和金属离子、配体之间存在较强的相互作用,形成了区别于纯盐的载体表面配合物。  相似文献   

7.
在氯化物熔体中用铁阴极沉积Nd-Fe合金的电极过程   总被引:2,自引:0,他引:2  
杨绮琴  符圣卫 《化学学报》1987,45(3):244-248
用循环伏安法、卷积伏安法和计时电位法研究了700℃-850℃下,在NaCl-KCl-NdCl3熔体中Nd(III)在铁电极上还原的阴极过程.对恒电位电解的沉积物进行X射线衍射分析.结果表明,Nd(III)在铁电极上还原时,在形成金属间化合物Fe2Nd后才析出纯金属钕,其中形成Fe2Nd这一步是可逆的.在850℃左右电解制取了含85-90wt%Nd的液态Nd-Fe合金.所得合金的物相被鉴定为Fe2Nd和Nd.  相似文献   

8.
通过分析论证了有单质参加的化合反应或有单质生成的分解反应一定属于氧化还原反应这个教学结论的不确切性。明确指出,三碘化钾的生成与分解、金属羰基化合物的生成与分解都是有单质参加的化合反应或是有单质生成的分解反应,由于它们都是配位反应,在反应前后没有元素化合价变化,因此它们都不是氧化还原反应。  相似文献   

9.
我们以商业预还原的维氏体(Fe1-xO)氨合成催化剂为载体,采用Fe(NO)3 ·9H2O和H2C2O4·2H2O进行原位室温固相反应制备纳米铁或微米铁修饰的铁基氨合成催化剂,并通过XRD、SEM、TG-DTG、H2-TPR等进行了表征.结果表明:Fe(NO)3·9H2O和H2C2O4·2H2O室温固相反应完全生成产物Fe2(C2O4)3·5H2O,且产物分散于载体维氏体催化剂表面.通过纳米铁-微米铁的修饰,催化剂的氨合成活性有很大提高且稳定性好.催化剂活性随着Fe负载量的增加先增加后降低,负载量5%时催化活性最好,反应器出口氨浓由450℃(12.4%)、425℃(11.0%)、400℃(9.4%)分别提升至450℃(15.6%)、425℃(14.8%)、400℃(13%).通过一步简单的修饰,维氏体催化剂的氨合成活性提高约25% ~38%.由于焙烧和还原,生成的Fe1xO或铁粒子与铁催化剂表面发生强相互作用,因此,反应过程中纳米铁或微米铁粒子能稳定存在,催化剂有较高的稳定性.  相似文献   

10.
本文研究了室温时K~3Fe(CN)~6,K~4Fe(CN)~6在酸碱条件下发生的固相配位化学反应。结果表明:K~3Fe(CN)~6与NaBH~4固相混合物室温下不反应,但加入固体氢氧化钠后,K~3Fe(CN)~6与NaBH~4的固相氧化还原反应在室温下很容易进行。K~4Fe(CN)~6与K~2S~2O~8的固相氧化还原反应在室温下能顺利进行,但当固体KOH存在时,反应明显受到抑制。K~3Fe(CN)~6与K~2C~2O~4.H~2O室温下无反应,但与H~2C~2O~4.2H~2O在室温时即发生固相取代反应。  相似文献   

11.
Four novel polyoxotungstates have been synthesized by reaction of the sandwich type compound [Fe (III) 4(H 2O) 10(B-beta-SbW 9O 33) 2] (6-) (noted Fe 4(H 2O) 10Sb 2W 18) with ethylenediamine (en) and/or oxalate (ox) ligands under various conditions. The one-dimensional (1D) compound [enH 2] 3[Fe (III) 4(H 2O) 8(SbW 9O 33) 2].20H 2O ( 1) is isolated at 130 degrees C and results from the elimination of two water molecules and the condensation of the polyoxotungstate precursor. The reaction of Fe 4(H 2O) 10Sb 2W 18 with oxalate ligands affords the molecular complex Na 14[Fe (III) 4(ox) 4(H 2O) 2(SbW 9O 33) 2].60H 2O ( 2) where two organic ligands substitute four water molecules, while the same reaction in the presence of en molecules at 130 degrees C leads to the formation of the functionalized 1D chain [enH 2] 7[Fe (III) 4(ox) 4(SbW 9O 33) 2].14H 2O ( 3) with protonated ethylenediamine counterions. Finally, at 160 degrees C a rearrangement of the Fe 4(H 2O) 10Sb 2W 18 polyoxotungstate is observed, and the sandwich type compound [enH 2] 5[Fe (II) 2Fe (II) 2(enH) 2(Fe (III)W 9O 34) 2].24H 2O ( 4) crystallizes. In 4, the heteroelement is a Fe (III) ion, and the water molecules on the two outer Fe (II) centers are bound to pendant monoprotonated en ligands. The four compounds have been characterized by IR spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. A detailed study of the magnetic properties of the mixed-valent hexanuclear iron complex in 4 shows evidence of an S = 5 ground-state because of spin frustration effects. A quantification of the electronic parameters characterizing the ground state ( D = +1.12 cm (-1), E/ D = 0.15) confirms that polyoxotungstate ligands induce large magnetic anisotropy.  相似文献   

12.
许金 《化学学报》1989,47(4):367-371
研究了水溶液中三价铁与2,3-二羟基苯甲酸络合反应的机理与动力学. 测定并计算了络合作用的反应速度常数. 活性 和活性焓随氢离子浓度增加而降低, 指明了FeCH2(3+)的缔合机理和FeOH(2+)与Fe2(OH)2(4+)的解离活化机理, 反应速率方程表明氢离子浓度的依赖关系对Fe(III)络合作用是典型的. 但是在[Fe(III)]的二级反应动力学则有一个反常贡献.  相似文献   

13.
烯酮或乙烯与甲醛环加成协同反应机理的对比研究   总被引:1,自引:0,他引:1  
方德彩  傅孝愿 《化学学报》1994,52(7):658-662
本文研究了烯酮与甲醛, 乙烯与甲醛两个环加成反应的协同过程的过渡态(TS),用能量分解方法对两个过渡态中反应物间的相互作用能的本质做了剖析。通过对比,发现在乙烯与甲的过渡态中反应物的占有轨道间电子的交换排斥作用能比较大, 从而可以说明此反应比乙烯与烯酮间的协同过程难于进行。  相似文献   

14.
A series of five Fe(III) phosphonate clusters with four different topologies is reported. The choice of coligand carboxylate plays an important role in directing the structure of the molecule. [Fe9(O)4(O2CCMe3)13(C10P)3] (1) and [Fe9(O)2(OH)(CO2Ph)10(C10P)6(H2O)2](CH3CN)7 (2; camphyl phosphonic acid, C10H17PO3H2 = C10PH2) represent two unprecedented nonanuclear Fe(III) cages having Fe9O4 and Fe9(O)2(OH) core structures, respectively. Whereas [Fe6O2(O)2(O2CCMe3)8(C10P)2 (H2O)2](CH3CN)4 (3) is a peroxo-bridged hexameric compound with an Fe6(O)2(O2) core. [Fe4(O)(O2CCMe3)4(C10P)3(Py)4](CH3CN)3 (4) and [Fe4(O)(O2CPh)4(C10P)3(Py)4](Py)3(CH3CN)2 (5; Py = pyridine) represents two tetranuclear clusters with the same Fe4O core structure.  相似文献   

15.
Optimized structures for the redox species of the diiron active site in [Fe]-hydrogenase as observed by FTIR and for species in the catalytic cycle for the reversible H(2) oxidation have been determined by density-functional calculations on the active site model, [(L)(CO)(CN)Fe(mu-PDT)(mu-CO)Fe(CO)(CN)(L')](q)(L = H(2)O, CO, H(2), H(-); PDT = SCH(2)CH(2)CH(2)S, L' = CH(3)S(-), CH(3)SH; q = 0, 1-, 2-, 3-). Analytical DFT frequencies on model complexes (mu-PDT)Fe(2)(CO)(6) and [(mu-PDT)Fe(2)(CO)(4)(CN)(2)](2)(-) are used to calibrate the calculated CN(-) and CO frequencies against the measured FTIR bands in these model compounds. By comparing the predicted CN(-) and CO frequencies from DFT frequency calculations on the active site model with the observed bands of D. vulgaris [Fe]-hydrogenase under various conditions, the oxidation states and structures for the diiron active site are proposed. The fully oxidized, EPR-silent form is an Fe(II)-Fe(II) species. Coordination of H(2)O to the empty site in the enzyme's diiron active center results in an oxidized inactive form (H(2)O)Fe(II)-Fe(II). The calculations show that reduction of this inactive form releases the H(2)O to provide an open coordination site for H(2). The partially oxidized active state, which has an S = (1)/(2) EPR signal, is an Fe(I)-Fe(II) species. Fe(I)-Fe(I) species with and without bridging CO account for the fully reduced, EPR-silent state. For this fully reduced state, the species without the bridging CO is slightly more stable than the structure with the bridging CO. The correlation coefficient between the predicted CN(-) and CO frequencies for the proposed model species and the measured CN(-) and CO frequencies in the enzyme is 0.964. The proposed species are also consistent with the EPR, ENDOR, and M?ssbauer spectroscopies for the enzyme states. Our results preclude the presence of Fe(III)-Fe(II) or Fe(III)-Fe(III) states among those observed by FTIR. A proposed reaction mechanism (catalytic cycle) based on the DFT calculations shows that heterolytic cleavage of H(2) can occur from (eta(2)-H(2))Fe(II)-Fe(II) via a proton transfer to "spectator" ligands. Proton transfer to a CN(-) ligand is thermodynamically favored but kinetically unfavorable over proton transfer to the bridging S of the PDT. Proton migration from a metal hydride to a base (S, CN, or basic protein site) results in a two-electron reduction at the metals and explains in part the active site's dimetal requirement and ligand framework which supports low-oxidation-state metals. The calculations also suggest that species with a protonated Fe-Fe bond could be involved if the protein could accommodate such species.  相似文献   

16.
The novel cationic diiron μ-allenyl complexes [Fe(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 4a; R = Ph, 4b) have been obtained in good yields by a two-step reaction starting from [Fe(2)Cp(2)(CO)(4)]. The solid state structures of [4a][CF(3)SO(3)] and of the diruthenium analogues [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}][BPh(4)] (R = Me, [2a][BPh(4)]; R = Ph, [2c][BPh(4)]) have been ascertained by X-ray diffraction studies. The reactions of 2c and 4a with Br?nsted bases result in formation of the μ-allenylidene compound [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(1)-C(α)=C(β)=C(γ)(Ph)(2)}] (5) and of the dimetallacyclopentenone [Fe(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)=C(β)(C(γ)(Me)CH(2))C(=O)}] (6), respectively. The nitrile adducts [Ru(2)Cp(2)(CO)(NCMe)(μ-CO){μ-η(1):η(2)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 7a; R = Ph, 7b), prepared by treatment of 2a,c with MeCN/Me(3)NO, react with N(2)CHCO(2)Et/NEt(3) at room temperature, affording the butenolide-substituted carbene complexes [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(R)(2)OC(=O)C[upper bond 1 end](H)] (R = Me, 10a; R = Ph, 10b). The intermediate cationic compound [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (9) has been detected in the course of the reaction leading to 10a. The addition of N(2)CHCO(2)Et/NHEt(2) to 7a gives the 2-furaniminium-carbene [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (11). The X-ray structures of 10a, 10b and [11][BF(4)] have been determined. The reactions of 4a,b with MeCN/Me(3)NO result in prevalent decomposition to mononuclear iron species.  相似文献   

17.
The hydrothermal reaction of thiosalicylic acid, (C(6)H(4)(CO(2)H)(SH)-1,2) with manganese(III) acetate leads to formation of the coordination solid [Mn(5)((C(6)H(4)(CO(2))(S)-1,2)(2))(4)(mu3-OH)2] (1) via a redox reaction, where resulting manganese(II) centres are coordinated by oxygen donor atoms and S-S disulfide bridge formation is simultaneously observed. Reaction of the same ligand under similar conditions with zinc(II) chloride yields the layered coordination solid [Zn(C(6)H(4)(CO(2))(S)-1,2)] (2). Hydrothermal treatment of manganese(III) acetate with 2-mercaptonicotinic acid, (NC(5)H(3)(SH)(CO(2)H)-2,3) was found to produce the 1-dimensional chain structure [Mn(2)((NC(5)H(3)(S)(CO(2))-2,3)(2))(2)(OH(2))(4)].4H(2)O (3) which also exhibits disulfide bridge formation and oxygen-only metal interactions. Compound 3 has been studied by thermogravimetric analysis and indicates sequential loss of lattice and coordinated water, prior to more comprehensive ligand fragmentation at elevated temperatures. The magnetic behaviour of 1 and 3 has been investigated and both exhibit antiferromagnetic interactions. The magnetic behaviour of 1 has been modelled as two corner-sharing isosceles triangles whilst 3 has been modelled as a 1-dimensional chain.  相似文献   

18.
Novel benzoic acid ligands with bulky amide groups at the ortho position, 2,6-(MeCONH)(2)C(6)H(3)CO(2)H (1) and 2,6-(t-BuCONH)(2)C(6)H(3)CO(2)H (2), and their tris- and tetrakis(carboxylate) complexes with Ca(II) and Tb(III) ions, (NEt(4))(2)[Ca(II)[O(2)C-2,6-(t-BuCONH)(2)C(6)H(3)](4)] (4), [Tb[O(2)C-2,6-(t-BuNHCO)(2)C(6)H(3)](3)(H(2)O)(3)]] (5), and (NMe)(4)[Tb[O(2)C-2,6-(t-BuNHCO)(2)C(6)H(3)](4)(thf)] (6), were synthesized. The formation of the NH...O hydrogen bonds between the amide NH and carboxylate for 2, (NEt(4))[2,6-(t-BuCONH)(2)C(6)H(3)CO(2)] (3), and 4 was determined by (1)H NMR spectroscopy in solution and in the solid state (CRAMPS, IR). The ligand exchange reactions were attempted between 4 and a large excess of 2,4,6- Me(3)C(6)H(3)CO(2)H in chloroform-d solution; however, exchange reaction did not take place, indicating that the Ca(II) ions bound strongly to the carboxylate in 4. The Ca(II) ion binding properties with the benzoate derivatives were also examined using Tb(III) ion as a fluorescence probe. These results indicate that the NH...O hydrogen bonding between the amide NH and the oxygen atom of the carboxylate contributes to strong Ca(II) binding and prevents the dissociation of the calcium-carboxylate bond. The X-ray structural analyses of these complexes revealed that the NH.O hydrogen-bonded carboxylate ligands prefer the chelate-type coordination and create a mononuclear [Ca(O(2)CR)(4)](2)(-) or [Tb(O(2)CR)(4)](-) core with anionic charge, which is known only in the active site of calcium-binding proteins.  相似文献   

19.
[Fe2(mu-O)(phen)4(H2O)2]4+ (1), one of the simplest mu-oxo diiron(III) complexes, quantitatively oxidises hydrazine to dinitrogen and itself is reduced to two moles of ferroin, [Fe(phen)3]2+ in presence of excess phenanthroline. The weak dibasic acid, 1 (pKa1= 3.71 +/- 0.05 and pKa2= 5.28 +/- 0.10 at 25.0 degrees C, I= 1.0 mol dm(-3)(NaNO3)) and its conjugate bases, [Fe2(mu-O)(phen)4(H2O)(OH)]3+ (2) and [Fe2(mu-O)(phen)4(OH)2]2+ (3) are involved in the redox process with the reactivity order 1 > 2 > 3 whereas N2H4 and not N2H5+ was found to be reactive in the pH interval studied 3.45-5.60. Cyclic voltammetric studies indicate poor oxidizing capacity of the title substitution-labile diiron complex, yet it oxidizes N2H4 with a moderate rate--a proton coupled electron transfer (1e, 1H+) drags the energetically unfavourable reaction to completion. The rate retardation in D2O media is substantially higher at higher pH due to the increasing basicity of the oxo-ligand in the order 3 > 2 > 1. Marcus calculations result an unacceptably high one-electron self-exchange rate for the iron center indicating an inner-sphere nature of the electron-transfer.  相似文献   

20.
The reaction of Fe2(S2C2H4)(CO)6 with cis-Ph2PCH=CHPPh2 (dppv) yields Fe2(S2C2H4)(CO)4(dppv), 1(CO)4, wherein the dppv ligand is chelated to a single iron center. NMR analysis indicates that in 1(CO)4, the dppv ligand spans axial and basal coordination sites. In addition to the axial-basal isomer, the 1,3-propanedithiolate and azadithiolate derivatives exist as dibasal isomers. Density functional theory (DFT) calculations indicate that the axial-basal isomer is destabilized by nonbonding interactions between the dppv and the central NH or CH2 of the larger dithiolates. The Fe(CO)3 subunit in 1(CO)4 undergoes substitution with PMe3 and cyanide to afford 1(CO)3(PMe3) and (Et4N)[1(CN)(CO)3], respectively. Kinetic studies show that 1(CO)4 reacts faster with donor ligands than does its parent Fe2(S2C2H4)(CO)6. The rate of reaction of 1(CO)4 with PMe3 was first order in each reactant, k = 3.1 x 10(-4) M(-1) s(-1). The activation parameters for this substitution reaction, DeltaH = 5.8(5) kcal/mol and DeltaS = -48(2) cal/deg.mol, indicate an associative pathway. DFT calculations suggest that, relative to Fe2(S2C2H4)(CO)6, the enhanced electrophilicity of 1(CO)4 arises from the stabilization of a "rotated" transition state, which is favored by the unsymmetrically disposed donor ligands. Oxidation of MeCN solutions of 1(CO)3(PMe3) with Cp2FePF6 yielded [Fe2(S2C2H4)(mu-CO)(CO)2(dppv)(PMe3)(NCMe)](PF6)2. Reaction of this compound with PMe3 yielded [Fe2(S2C2H4)(mu-CO)(CO)(dppv)(PMe3)2(NCMe)](PF6)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号