首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[MnIV3(micro-O)4(phen)4(H2O)2]4+ (, phen=1,10-phenanthroline) equilibrates with its conjugate base [Mn3(micro-O)4(phen)4(H2O)(OH)]3+ in aqueous solution. Among the several synthetic multinuclear oxo- and/or carboxylato bridged manganese complexes known to date containing metal-bound water, to the best of our knowledge, only deprotonates (right harpoon over left harpoon+H+, pKa=4.00 (+/-0.15) at 25.0 degrees C, I=1.0 M, maintained with NaNO3) at physiological pH. An aqueous solution of quantitatively oxidises NIII (HNO2 and NO2-) to NO3- within pH 2.3-4.1, the end manganese state being MnII. Both and are reactive oxidants in the title redox. In contrast to a common observation that anions react quicker than their conjugate acids in reducing metal centred oxidants, HNO2 reacts faster than NO2- in reducing or . The observed rates of nitrite oxidation do not depend on the variation of 1,10-phenanthroline content of the solution indicating that the MnIV-bound phen ligands do not dissociate in solution under experimental conditions. Also, there was no kinetic evidence for any kind of pre-equilibrium replacement of MnIV-bound water by nitrite prior to electron transfer which indicates the substitution-inert nature of the MnIV-bound waters and the 1,10-phenanthroline ligands. The MnIV3 to MnII transition in the present observation proceeds through the intermediate generation of the spectrally characterised mixed-valent MnIIIMnIV dimer that quickly produces MnII. The reaction rates are substantially lowered when solvent H2O is replaced by D2O and a rate determining 1e, 1H+ electroprotic mechanism is proposed.  相似文献   

2.
The formation of the S-nitrosocysteine (CySNO) in aqueous solution starting from cysteine (CySH) and sodium nitrite is shown to strongly depend on the pH. Experiments conducted within the pH range 0.5-7.0 show that at pH below 3.5 the NO+ (or H2NO 2 +) is the main nitrosating species, while at higher pH (>3.5) the nitrosating species is most likely the N2O3. A kinetic study provided a general kinetic equation, V(CySNO) = k1[HNO2][CySH]eq [H+] + k2[HNO2]2. The first term of this equation is predominant at pH lower than 3.5, in agreement with the literature for the direct nitrosation of thiols with nitrous acid; the value for the third-order rate constant, k(1) = 7.9 x 10(2) L(2) mol(-2) min(-1), was calculated. For experiments at pH higher than 3.5, the second term becomes prevalent and the second-order rate constant k(2) = (3.3 +/- 0.1) x 10(3) L mol(-1) min(-1) was calculated. A competitive oxidation process leading to the direct formation of cystine (CySSCy) has been also found. Most likely also for this process two different mechanisms are involved, depending on the pH, and a general kinetic equation, V(CySSCy) = k3[CySH](eq)[HNO2][H+] + k3'[CySH]eq[HNO2], is proposed.  相似文献   

3.
Zhang J  Goh JK  Tan WT  Bond AM 《Inorganic chemistry》2006,45(9):3732-3740
Voltammetric studies on the reduction of alpha and beta isomers of the Keggin polyoxometalate anion [SiW12O40]4- reveal a series of electrochemically reversible processes in acidic aqueous media. In the presence of NO2-, catalytic current is detected in the potential region of the [SiW12O40]4-/5- process. Electronic spectroscopy and simulation of voltammetric data undertaken at variable [NO2-] and [H+] allow the following mechanism to be postulated, [SiW12O40]4- + e- <-->[SiW12O40]5-, H+ + HNO2 <--> NO+ + H2O, NO+ + [SiW12O40]5- --> NO + [SiW12O40]4-. The second-order rate constant for the rate-determining step is faster for the alpha isomer than for the beta one. This may be attributed to the different reversible potentials of -0.144 V (alpha isomer) and -0.036 V vs Ag/AgCl (beta isomer) and, hence, smaller driving force for an assumed outer sphere electron-transfer reaction in the case of beta isomer. A stable, water-insoluble, thin-film [Ru(bipy)3]2[alpha-SiW12O40] chemically modified electrode was generated electrochemically via ion-exchange of [Ru(bipy)3]2+ with Bu4N+ in the [Bu4N]4[alpha-SiW12O40] solid. The first reduction process with this modified electrode gives rise to the reaction [Ru(bipy)3]2[alpha-SiW12O40](solid) + H+(soln) + e- <--> H[Ru(bipy)3]2[alpha-SiW12O40](solid). The need to transfer a proton from the solution to the solid phase for charge neutralization purposes introduces a hydrogen-ion concentration dependence into this reaction, which is not found in the solution-phase study. Nevertheless, the voltammetric catalytic activity with respect to nitrite reduction is retained with the chemically modified electrode. However, nitrite catalysis with the [Ru(bipy)3]2[alpha-SiW12O40]-modified electrode is now independent of concentration of H+, rather than exhibiting a first-order dependence, and full mechanistic details for this process are unknown.  相似文献   

4.
The title reaction takes place according to the stoichiometry 2L(2)RhOO(2+) + 3HNO(2) + H(2)O --> 2L(2)Rh(OH(2))(3+) + 3NO(3)(-) + H(+) (L(2) = meso-Me(6)-[14]ane-N(4)). The kinetics are second order in HNO(2) and independent of the concentration of L(2)RhOO(2+), rate = (k(1) + k(2)[H(+)])[HNO(2)](2), where k(1) = 10.9 M(-1) s(-1) and k(2) = 175 M(-2) s(-1) at 25 degrees C and 0.10 M ionic strength. The reaction produces two observable intermediates, the nitrato (L(2)RhONO(2)(2+)) and hydroperoxo (L(2)RhOOH(2+)) complexes. The product analysis and kinetics are indicative of the initial rate-controlling formation of NO and NO(2), both of which react rapidly with L(2)RhOO(2+) in subsequent steps. The reaction with NO produces mainly L(2)RhONO(2)(2+), which hydrolyzes to L(2)Rh(OH(2))(3+) and NO(3)(-). Another minor pathway generates the hydroperoxo complex, which was detected by its known reaction with Fe(aq)(2+). The reaction of NO(2) with L(2)RhOO(2+) requires an additional equivalent of HNO(2) and produces L(2)Rh(OH(2))(3+) and NO(3)(-) via a proposed peroxynitrato complex L(2)RhOONO(2)(2+). This work provides strong evidence for the long-debated reaction between HNO(2) and H(2)NO(2)(+) to generate N(2)O(3).  相似文献   

5.
Chemoselective synthesis and isolation of alkynyl [Cp*Ir(III)(bpy)CCPh]+ (2, Cp* = eta5-C5Me5, bpy = 2,2'-bipyridine), acyl [Cp*Ir(III)(bpy)C(O)CH2Ph]+ (3), and ketonyl [Cp*Ir(III)(bpy)CH2C(O)Ph]+ (4) intermediates in anti-Markovnikov and Markovnikov hydration of phenylacetylene in water have been achieved by changing the pH of the solution of a water-soluble aqua complex [Cp*Ir(III)(bpy)(H2O)]2+ (1) used as the same starting complex. The alkynyl complex [2]2.SO4 was synthesized at pH 8 in the reaction of 1.SO4 with H2O at 25 degrees C, and was isolated as a yellow powder of 2.X (X = CF3SO3 or PF6) by exchanging the counteranion at pH 8. The acyl complex [3]2.SO4 was synthesized by changing the pH of the aqueous solution of [2]2.SO4 from 8 to 1 at 25 degrees C, and was isolated as a red powder of 3.PF6 by exchanging the counteranion at pH 1. The hydration of phenylacetylene with 1.SO4 at pH 4 at 25 degrees C gave a mixture of [2]2.SO4 and [4]2.SO4. After the counteranion was exchanged from SO4(2-) to CF3SO3-, the ketonyl complex 4.CF3SO3 was separated from the mixture of 2.CF3SO3 and 4.CF3SO3 because of the difference in solubility at pH 4 in water. The structures of 2-4 were established by IR with 13C-labeled phenylacetylene (Ph12C13CH), electrospray ionization mass spectrometry (ESI-MS), and NMR studies including 1H, 13C, distortionless enhancement by polarization transfer (DEPT), and correlation spectroscopy (COSY) experiments. The structures of 2.PF6 and 3.PF6 were unequivocally determined by X-ray analysis. Protonation of 3 and 4 gave an aldehyde (phenylacetaldehyde) and a ketone (acetophenone), respectively. Mechanism of the pH-selective anti-Markovnikov vs Markovnikov hydration has been discussed based on the effect of pH on the formation of 2-4. The origins of the alkynyl, acyl, and ketonyl ligands of 2-4 were determined by isotopic labeling experiments with D2O and H2(18)O.  相似文献   

6.
The first mechanistic study of a spin-forbidden proton-transfer reaction in aqueous solution is reported. Laser flash photolysis of alkaline trioxodinitrate (N(2)O(3)(2)(-), Angeli's anion) is used to generate a nitroxyl anion in its excited singlet state ((1)NO(-)). Through rapid partitioning between protonation by water and electronic relaxation, (1)NO(-) produces (1)HNO (ground state, yield 96%) and (3)NO(-) (ground state, yield 4%), which comprise a unique conjugate acid-base couple with different ground-state multiplicities. Using the large difference between reactivities of (1)HNO and (3)NO(-) in the peroxynitrite-forming reaction with (3)O(2), the kinetics of spin-forbidden deprotonation reaction (1)HNO + OH(-) --> (3)NO(-) + H(2)O is investigated in H(2)O and D(2)O. Consistent with proton transfer, this reaction exhibits primary kinetic hydrogen isotope effect k(H)/k(D) = 3.1 at 298 K, which is found to be temperature-dependent. Arrhenius pre-exponential factors and activation energies of the second-order rate constant are found to be: log(A, M(-)(1) s(-)(1)) = 10.0 +/- 0.2 and E(a) = 30.0 +/- 1.1 kJ/mol for proton transfer and log(A, M(-)(1) s(-)(1)) = 10.4 +/- 0.1 and E(a) = 35.1 +/- 0.7 kJ/mol for deuteron transfer. Collectively, these data are interpreted to show that the nuclear reorganization requirements arising from the spin prohibition necessitate significant activation before spin change can take place, but the spin change itself must occur extremely rapidly. It is concluded that a synergy between the spin prohibition and the reaction energetics creates an intersystem barrier and is responsible for slowness of the spin-forbidden deprotonation of (1)HNO by OH(-); the spin prohibition alone plays a minor role.  相似文献   

7.
The protonated [M + H]+ ions of glycine, simple glycine containing peptides, and other simple di- and tripeptides react with acetone in the gas phase to yield [M + H + (CH3)2CO]+ adduct ion, some of which fragment via water loss to give [M + H + (CH3)2CO - H2O]+ Schiff's base adducts. Formation of the [M + H + (CH3)2CO]+ adduct ions is dependent on the difference in proton affinities between the peptide M and acetone, while formation of the [M + H + (CH3)2CO - H2O]+ Schiff's base adducts is dependent on the ability of the peptide to act as an intramolecular proton "shuttle." The structure and mechanisms for the formation of these Schiff's base adducts have been examined via the use of collision-induced dissociation tandem mass spectrometry (CID MS/MS), isotopic labeling [using (CD3)2CO] and by comparison with the reactions of Schiff's base adducts formed in solution. CID MS/MS of these adducts yield primarily N-terminally directed a- and b-type "sequence" ions. Potential structures of the b1 ion, not usually observed in the product ion spectra of protonated peptide ions, were examined using ab initio calculations. A cyclic 5 membered pyrrolinone, formed by a neighboring group participation reaction from an enamine precursor, was predicted to be the primary product.  相似文献   

8.
The effect of four different mobile phase compositions with reversed-phase methanol-water (50:50) + 0.05 M ammonium acetate, methanol-water (50:50) + 0.05 M ammonium formate, acetonitrile-water (50:50) + 0.05 M ammonium acetate and acetonitrile-water (50:50) + 0.05 M ammonium formate were compared in filament-on thermospray liquid chromatography-mass spectrometry for the determination of carbamate and chlorotriazine pesticides. In the positive-ion mode, [M + H]+ and [M + NH4]+ were generally the base peaks for the chlorotriazines and the carbamates, respectively. Depending on the mobile phase used, other adduct ions obtained corresponded to [M + CH3CN + H]+, [M + CH3OH + NH4]+, [M + CH3COONH4 + NH4 - 2H2O]+, [M + CH3CN + NH4]+, [M + CH3COONH4 + H - H2O]+ and the dimer [2M + H]+. In the negative-ion mode, [M - H]- and adducts with the ionizing additive [M + CH3COO]- or [M + HCOO]- were obtained. Other ions for the carbamates carbaryl and oxamyl corresponded to [M - CONHCH3 + CH3COOH]- and [M - CON(CH3)2 + HCOO]-, respectively. The variation of mobile phase composition provides additional structural information in thermospray liquid chromatography-mass spectrometry with no appreciable loss of sensitivity. Applications are reported for the determination of carbamate and chlorotriazine pesticides at the ng/g level in spiked and real soil samples, respectively.  相似文献   

9.
The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive intermediates along the reaction coordinate. The aquation process occurs via weaker Pt-Cl-Hg or Pt-Cl-HgCl bridged complexes.  相似文献   

10.
Taraba J  Zak Z 《Inorganic chemistry》2006,45(9):3695-3700
Several salts of bis(chlorosulfonyl)imide HN(SO2Cl)2 (1), namely, two solvates of its potassium salt, KN(SO2Cl)2.(1/2)CH3CN (1K1), KN(SO2Cl)2.(1/6)CH2Cl2 (1K2), and its tetrachlorophosphonium salt, [PCl4][N(SO2Cl)2] (2), were prepared and structurally characterized. The reaction of HN(SO2Cl)2 with Me3N gives the [N(SO2Cl)2]- salt of a novel cation, [N(SO2NMe3)2]+. This cation is analogous to the [HC(SO2NMe3)2]+ cation, but in contrast to the latter, it is fairly stable to hydrolysis. The salt [N(SO2NMe3)2]+[N(SO2Cl)2]- (3) can be converted into salts of other anions by being treated with diluted aqueous solutions of the respective acids, and thus NO3-, Cl-.H2O, SeO3(2-), CH3COO-, HSO4-, (COO)2(2-) salts were prepared. Treatment of 3 with concentrated HNO3 gave the [N(SO2NMe3)2]+ [O2NO-H-ONO2]- salt, and the addition of an HCl-acidified FeCl3 aqueous solution yielded the FeCl4- salt. Methanolysis resulted in the formation of MeOSO3- and [MeOSO2NSO2OMe]- salts. All salts have been characterized by chemical analysis, vibrational spectroscopy, and X-ray structure determinations.  相似文献   

11.
A series of new 1D chain and 2D coordination polymers with cyclotriguaiacylene-type ligands are reported. A zig-zag 1D coordination chain is found in complex [Cd(2)(4ph4py)(NO(3))(3)(H(2)O)(2)(DMA)(2)]·(NO(3))·(DMA)(4), where 4ph4py = tris[4-(4-pyridyl)benzoyl]-cyclotriguaiacylene and DMA = dimethylacetamide, while complex [Zn(4ph4py)(2)(CF(3)COO)(H(2)O)]·(CF(3)COO)(NMP)(7), where NMP = N-methylpyrrolidone, has a doubly bridged coordination chain structure. Complexes [M(3ph3py)(NO(3))(2)]·(NMP)(4) where M = Co or Zn, 3ph3py = tris[3-(3-pyridyl)benzoyl]cyclotriguaiacylene, are isostructural and feature 1D ladder coordination chains. Complexes [Cd(2)(4ph4py)(2)(NO(3))(4)(NMP)]·(NMP)(9)(H(2)O)(4) and [Co(4ph4py)(H(2)O)(2)]·(NO(3))(2)·(DMF)(2), where DMF = dimethylformamide, both have (3,4)-connected 2D coordination polymers with a rare (4(2).6(2))(4.6(2))(2) topology. A 2D coordination polymer with this topology is also found in complex [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)]·(NO(3))(3)·(DMF)(9) where 3ph4py = tris[3-(4-pyridyl)benzoyl]cyclotriguaiacylene. All 2D coordination polymer complexes are interpenetrating or polycatenating. [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)](3+)polymers form a 2D→3D polycatenation showing self-complementary "hand-shake" interactions between the host-type ligands.  相似文献   

12.
The anions [ReX3(CO)2(NO)]- (with X = Cl, 1; X = Br, 2) have been prepared with different counterions. Complex 1 was found to lose its chloride ligands in water within 24 h. The [Re(H2O)3(CO)2(NO)]2+ cation obtained after hydrolysis is a strong acid, which consequently undergoes a slow condensation reaction in water to form the very stable [Re(mu3-O)(CO)2(NO)]4 cluster 4 at pH > 2, that precipitates from the aqueous solution and is insoluble also in organic solvents. Fast deprotonation of [Re(H2O)3(CO)2(NO)]2+ did not lead to 4 but rather to the mononuclear species [Re(OH)(H2O)2(CO)2(NO)]+. Subsequent attack of OH- at a CO group resulted in the formation of a rhenacarboxylic acid and its carboxylate anion. For solutions of even higher pH, IR spectroscopy provided evidence for the formation of a Re(C(O)ON(O)) species. These processes were found to be reversible on lowering the pH. Starting from cluster 4 it was possible to obtain complexes of the types [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3](L2 = 2-picolinate, 2,2'-bipyridine, L-phenylalanate; L3 = tris(pyrazolyl)methane, 1,4,7-trithiacyclononane) in the presence of an acid in protic solvents, but only in low yields. In further synthetic studies, complexes 1 and 2 were found to be superior starting materials for substitution reactions to form [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3] complexes.  相似文献   

13.
XAFS spectra of palladium(II) in concentrated HNO3/HClO4 acid mixtures have been recorded and analyzed. Structural parameters of the Pd(H2O)4(2+) complex and the mixed nitric Pd(NO3)2(H2O)2 complex, for the first time, were determined by the XAFS method. For pure 5 M HClO4 and for mixtures (0-0.3 M HNO3), the XAFS spectra of the 0.02 M Pd solutions are indeed very similar and originated from four Pd-O(w) equivalent distances. For the Pd(H2O)4(2+) square-planar aqua ion in strong perchloric acid, the use of an FEFF6 theoretical approach led to a first-shell Pd-O(w) distance of 2.00 (1) A and a Debye-Waller (DW) factor of sigma2 = 0.0030 (3) A2. Four water molecules are tightly bound to the Pd2+ ion in the equatorial plane, while two (or one) axial water molecules are weakly bound to the metal ion at 2.5 A with a DW factor of 0.015 (5) A2. For highly concentrated mixtures (4-6 M HNO3) and for pure concentrated (4-6 M) nitric acid as well as for crystalline powder Pd(NO3)2(H2O)2, the XAFS spectra are very similar and are determined by the mixed nitric complex Pd(NO3)2(H2O)2: four Pd-O near-equivalent distances of 2.01 (1) A from two H2O and two NO3 molecules with a total DW factor of sigma2 = 0.0037 (3) A2. Moreover, two Pd---N distances of 2.8-2.9 A were determined in the second coordination shell. Finally, for intermediate mixtures (1-3 M HNO3 in 5 M HClO4), the XAFS spectra are a superposition of the XAFS of Pd(H2O)4(2+) and Pd(NO3)2(H2O)2 complexes. The mean ligand number NO3(-) around Pd2+ has been calculated, and the XAFS results at pH close to zero confirm the spectrophotometric results previously published.  相似文献   

14.
Uptake experiments of NO3 on mineral dust powder were carried out under continuous molecular flow conditions at 298 +/- 2 K using the thermal decomposition of N2O5 as NO3 source. In situ laser detection using resonance enhanced multiphoton ionization (REMPI) to specifically detect NO2 and NO in the presence of N2O5, NO3 and HNO3 was employed in addition to beam-sampling mass spectrometry. At [NO3] = (7.0 +/- 1.0) x 10(11) cm(-3) we found a steady state uptake coefficient gamma(ss) ranging from (3.4 +/- 1.6) x 10(-2) for natural limestone to (0.12 +/- 0.08) for Saharan Dust with gamma(ss) decreasing as [NO3] increased. NO3 adsorbed on mineral dust leads to uptake of NO2 in an Eley-Rideal mechanism that usually is not taken up in the absence of NO3. The disappearance of NO3 was in part accompanied by the formation of N2O5 and HNO3 in the presence of NO2. NO3 uptake performed on small amounts of Kaolinite and CaCO3 leads to formation of some N2O5 according to NO((3ads)) + NO(2(g)) --> N2O(5(ads)) --> N2O(5(g)). Slow formation of gas phase HNO3 on Kaolinite, CaCO3, Arizona Test Dust and natural limestone has also been observed and is clearly related to the presence of adsorbed water involved in the heterogeneous hydrolysis of N2O(5(ads)).  相似文献   

15.
Metal selenocarboxylate salts (PPh4)[M(SeC[O]Tol)3] (M = Zn (1), Cd (2) and Hg (3); Tol = C6H4-p-CH3) have been synthesized by reacting Zn(NO3)2 .6H2O, Cd(NO3)2 .4H2O or HgCl2 with (Na+)TolC[O]Se- and PPh4Cl in the ratio of 1 : 4 : 1. The structures of these compounds were determined by single-crystal X-ray diffraction methods. The crystal structures contain discrete cations and anions. In the each anion, the metal center is bound to three TolC[O]Se ligands, primarily through Se, though some long M...O interactions also occur. NMR spectra (113Cd, 199Hg and 77Se, as appropriate) are reported for solutions of [M(SeC[O]Tol)3]-, and of [M(SeC[O]Tol)3](-) - [M(SC[O]Ph)3]- mixtures (M = Zn-Hg), in CH2Cl2 at reduced temperatures. In addition, ESI-MS data have been obtained for [M(SeC[O]Tol)(3)](-) - [M(SC[O]Ph)3]- mixtures (M = Zn-Hg) in acetone and in CH2Cl2. The NMR and ESI-MS studies show that the complexes [M(SeC[O]Tol)n(SC[O]Ph)(3-n)]- (n= 3-0) persist in solution.  相似文献   

16.
The interaction of NO3 free radical and N2O5 with laboratory flame soot was investigated in a Knudsen flow reactor at T = 298 K equipped with beam-sampling mass spectrometry and in situ REMPI detection of NO2 and NO. Decane (C10H22) has been used as a fuel in a co-flow device for the generation of gray and black soot from a rich and a lean diffusion flame, respectively. The gas-phase reaction products of NO3 reacting with gray soot were NO, N2O5, HONO, and HNO3 with HONO being absent on black soot. The major loss of NO3 is adsorption on gray and black soot at yields of 65 and 59%, respectively, and the main gas-phase reaction product is N2O5 owing to heterogeneous recombination of NO3 with NO2 and NO according to NO3 + {C} --> NO + products. HONO was quantitatively accounted for by the interaction of NO2 with gray soot in agreement with previous work. Product N2O5 was generated through heterogeneous recombination of NO3 with excess NO2, and the small quantity of HNO3 was explained by heterogeneous hydrolysis of N2O5. The reaction products of N2O5 on both types of soot were equimolar amounts of NO and NO2, which suggest the reaction N2O5 + {C} --> N2O3(ads) + products with N2O3(ads) decomposing into NO + NO2. The initial and steady-state uptake coefficients gamma 0 and gamma ss of both NO3 and N2O5 based on the geometric surface area continuously increase with decreasing concentration at a concentration threshold for both types of soot. gamma ss of NO3 extrapolated to [NO3] --> 0 is independent of the type of soot and is 0.33 +/- 0.06 whereas gamma ss for [N2O5] --> 0 is (2.7 +/- 1.0) x 10(-2) and (5.2 +/- 0.2) x 10(-2) for gray and black soot, respectively. Above the concentration threshold of both NO3 and N2O5, gamma ss is independent of concentration with gamma ss(NO3) = 5.0 x 10(-2) and gamma ss(N2O5) = 5.0 x 10(-3). The inverse concentration dependence of gamma below the concentration threshold reveals a complex reaction mechanism for both NO3 and N2O5. The atmospheric significance of these results is briefly discussed.  相似文献   

17.
From the two nitrogen-rich ligands BT(2-) (BT=5,5'-bitetrazole) and BTT(3-) (BTT=1,3-bis(1H-tetrazol-5-yl)triazene), a series of novel rare earth metal complexes were synthesised. For the BT ligand, a vast number of these complexes could be structurally characterised by single-crystal XRD, revealing structures ranging from discrete molecular aggregates to salt-like compounds. The isomorphous complexes [La2(BT)3]14 H2O (1) and [Ce2(BT)3]14 H2O (2) reveal discrete molecules in which one BT(2-) acts as a bridging ligand and two BT groups as chelating ligands. The complexes, [M(BT)(H2O)7]2[BT] x (x) H2O (3-5), (M=Nd (3), Sm (4), and Eu (5)), are also isomorphous and consist of [M(BT)(H2O)7]+ ions in which only one BT(2-) acts as a chelate ligand for each metal centre. [Tb(H2O)8]2[BT]3 x H2O (6) and [Er(H2O)8](2)[BT](3)x H2O (7) are salt-like compounds that do not exhibit any significant metal-nitrogen contacts. In the BTT-samarium compound 9, discrete molecules were found in which BTT(3-) acts as a tridentate ligand with three Sm--N bonds.  相似文献   

18.
Fluorine-containing ligands 2,3,5,6-tetrafluoro-1,4-bis(imidazol-1-yl-methyl)benzene (1) and 2,3,5,6-tetrafluoro-1,4-bis(2-methylimidazol-1-yl-methyl)benzene (2) were prepared and coordinated with AgNO3, Co(ClO4)2 x 6 H2O, and Cd(NO3)2 x 4 H2O, respectively, to form the following structures: 3D channel polymer [Ag2(1)2(NO3)2 x H2O x MeOH]n (3), 2D sheet polymer [Co(1)3(ClO4)2]n (4), 1D chain polymer [Cd(1)3(NO3)2 x 4 H2O]n (5), and a 2D herringbone sheet polymer [Ag(2)NO3 x 1.5 MeOH]n (6). The solid-state crystal structures of 3-6 were studied by single-crystal X-ray crystallography.  相似文献   

19.
The unsymmetrical tridentate benzimidazole-pyridine-carboxamide units in ligands L1-L4 react with trivalent lanthanides, Ln(III), to give the nine-co-ordinate triple-helical complexes [Ln(Li)3]3+ (i = 1-4) existing as mixtures of C3-symmetrical facial and C1-symmetrical meridional isomers. Although the beta13 formation constants are 3-4 orders of magnitude smaller for these complexes than those found for the D3-symmetrical analogues [Ln(Li)3]3+ (i = 5-6) with symmetrical ligands, their formation at the millimolar scale is quantitative and the emission quantum yield of [Eu(L2)3]3+ is significantly larger. The fac-[Ln(Li)3]3+ <--> mer-[Ln(Li)3]3+ (i = 1-4) isomerisation process in acetonitrile is slow enough for Ln = Lu(III) to be quantified by 1H NMR below room temperature. The separation of enthalpic and entropic contributions shows that the distribution of the facial and meridional isomers can be tuned by the judicious peripheral substitution of the ligands affecting the interstrand interactions. Molecular mechanics (MM) calculations suggest that one supplementary interstrand pi-stacking interaction stabilises the meridional isomers, while the facial isomers benefit from more favourable electrostatic contributions. As a result of the mixture of facial and meridional isomers in solution, we were unable to obtain single crystals of 1:3 complexes, but the X-ray crystal structures of their nine-co-ordinate precursors [Eu(L1)2(CF3SO3)2(H2O)](CF3SO3)(C3H5N)2(H2O) (6, C45H54EuF9N10O13S3, monoclinic, P2(1)/c, Z = 4) and [Eu(L4)2(CF3SO3)2(H2O)](CF3SO3)(C4H4O)(1.5) (7, C51H66EuF9N8O(15.5)S3, triclinic, P1, Z = 2) provide crucial structural information on the binding mode of the unsymmetrical tridentate ligands.  相似文献   

20.
Cationic metal species normally function as Lewis acids, accepting electron density from bound electron-donating ligands, but they can be induced to function as electron donors relative to dioxygen by careful control of the oxidation state and ligand field. In this study, cationic vanadium(IV) oxohydroxy complexes were induced to function as Lewis bases, as demonstrated by addition of O2 to an undercoordinated metal center. Gas-phase complex ions containing the vanadyl (VO2+), vanadyl hydroxide (VOOH+), or vanadium(V) dioxo (VO2+) cation and nitrile (acetonitrile, propionitrile, butyronitrile, or benzonitrile) ligands were generated by electrospray ionization (ESI) for study by multiple-stage tandem mass spectrometry. The principal species generated by ESI were complexes with the formula [VO(L)n]2+, where L represents the respective nitrile ligands and n=4 and 5. Collision-induced dissociation (CID) of [VO(L)5]2+ eliminated a single nitrile ligand to produce [VO(L)4]2+. Two distinct fragmentation pathways were observed for the subsequent dissociation of [VO(L)4]2+. The first involved the elimination of a second nitrile ligand to generate [VO(L)3]2+, which then added neutral H2O via an association reaction that occurred for all undercoordinated vanadium complexes. The second [UO(L)4]2+ fragmentation pathway led instead to the formation of [VOOH(L)2]+ through collisions with gas-phase H2O and concomitant losses of L and [L+H]+. CID of [VOOH(L)2]+ caused the elimination of a single nitrile ligand to generate [VOOH(L)]+, which rapidly added O2 (in addition to H2O) by a gas-phase association reaction. CID of [VONO3(L)2]+, generated from spray solutions created by mixing VOSO4 and Ba(NO3)2 (and precipitation of BaSO4), caused elimination of NO2 to produce [VO2(L)2]+. CID of [VO2(L)2]+ produced elimination of a single nitrile ligand to form [VO2(L)]+, a V(V) analogue to the O2-reactive V(IV) species [VOOH(L)]+; however, this V(V) complex was unreactive with O2, which indicates the requirement for an unpaired electron in the metal valence shell for O2 addition. In general, the [VO2(L)2]+ species required higher collisions energies to liberate the nitrile ligand, suggesting that they are more strongly bound than the [VOOH(L)2]+ counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号