首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The mononuclear complexes [Ag(H2L1)(Py)2](NO3) x H2O (1, H2L1 = 2,6-bis(5-methyl-1H-pyrazol-3-yl)pyridine) and [Ag(NO3)(L()] (2, L2 = 2,6-bis(5-methyl-1-isopropyl-1H-pyrazol-3-yl)pyridine), dinuclear complex [Ag2(H2L3)2(HL4)2] (3, H2L3 = 2,6-bis(5-phenyl-1H-pyrazol-3-yl)pyridine, HL4 = 6-(5-phenyl-1H-pyrazolyl-3-yl)picolinate), one-dimensional polymer {[Ag2(H2L1)2](NO3)2 x H2O}(n) (4), and hexanuclear clusters [Ag6(HL1)4](X)2 (X = NO3-, 5 ; BF4-, 6 ; ClO4-, 7) stabilized by pincer-like bispyrazolyl ligands have been prepared and characterized using (1)H NMR spectroscopy, elemental analysis, IR spectroscopy, luminescence spectroscopy and X-ray diffraction. In complex , there is a ligand unsupported Ag-Ag bond between the two silver atoms. Complex displays a one-dimensional polymer consisting of an infinite Ag-Ag chain and every two adjacent silver ions are bridged by an H2L1 ligand. Complexes and have the same Ag6 cores in which six silver atoms are held together by four HL1 and five Ag-Ag bonds, while complex was held together by six Ag-Ag bonds. The silver-silver distances in these complexes are found in the range of 2.874(1)-3.333(2) A for ligand supported, and 3.040(1) A for ligand unsupported Ag-Ag bonds, respectively. Complexes 3-7 are strongly luminescent due to either intraligand or metal-ligand charge transfer processes.  相似文献   

2.
Three luminescent silver(I)-oligo(phenylenevinylene) complexes, [Ag2(bmsb)(ClO4)2] (1), [Ag2(bmsb)(H2O)4](BF4)2 (2), and [Ag2(bdb)(CF3SO3)2] (3) (bmsb = 1, 4-bis(methylstyryl)benzene, bdb = 4,4'-bis(2, 5-dimethylstryryl)biphenyl), have been synthesized and structurally characterized. Complexes 1 and 2 are 2D networks with unique metallocyclophane motifs. Complex 3 affords a 2D zigzag sheet, in which silver triflates form tubelike double chains and bdb molecules act as linkages. Complex 2 exhibits high electric conductivity because of columnar aromatic stackings formed through intra- and intermolecular pi-pi interactions. Complexes 1-3 in the solid state exhibit luminescence, of which excitation and emission maxima are shifted to longer wavelength as compared to those of the corresponding metal-free ligands.  相似文献   

3.
Five novel Cd(II) coordination polymers with three structurally related flexible disulfoxide ligands, [[Cd(L1)3](ClO4)2]n (1), [[Cd(L2)3](ClO4)2(CHCl3)]n (2), [Cd(L2)(NO3)2(H2O)]n (3), [Cd2(L3)2(NO3)4]n (4) and [[Cd(L3)3](ClO4)2]n (5), where L1= 1,3-bis(phenylsulfinyl)propane, L2= 1,4-bis(phenylsulfinyl)butane and L3= 1,4-bis(ethylsulfinyl)butane, were synthesized and structurally determined by X-ray diffraction. Complex 1 has a 2D layer structure, in which part of the L1 ligands bridge the Cd(II) ions to form double-bridging chains and the other part of ligands link such chains to form a 2D framework. Complexes 2 and 5 are isomorphous, showing unusual 2D (3,6) network structures containing triangular grids. Complex 3 adopts a 2D (4,4) network formed by L2 linking the NO3- bridged (Cd-O-N-O-)n 1D zigzag chains. By contrast, is a 1D chain, in which two Cd(II) centers are bridged by mu2-O of sulfoxide groups to form a dinuclear unit, and L3 ligands link such dinuclear units to form a 1D double-bridging chain. The structural differences among such complexes show that the ligand nature and counter anions have important influences on the complex structures, which may provide a rational method for controlling the framework formation in metal-organic coordination polymers.  相似文献   

4.
The reaction of corresponding cadmium salts with the flexible ligand 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene (bbtz) affords the 3D coordination network [Cd3(bbtz)6(H2O)6](BF4)(6.1.75H2O (1), containing ribbons of rings and planar 2D (4,4) networks polycatenated with each other, the undulating 2D (4,4) network [Cd(bbtz)2(H2O)2](ClO4)2.2H2O (2), and ribbons of rings [Cd(bbtz)2(H2O)2](BF4)2.3DMF (3) and [Cd(bbtz)2(H2O)2](ClO4)2.3DMF (4).  相似文献   

5.
Chen CL  Tan HY  Yao JH  Wan YQ  Su CY 《Inorganic chemistry》2005,44(23):8510-8520
Reaction of the ditopic semirigid ligand 1,2-bis(imidazolylmethyl)benzene (1,2-bImb) or the flexible ligand 1,4-bis(2-benzimidazolyl)butane (C4BIm) with AgX (X = ClO4-, BF4-, CF3CO2-) afforded five new complexes, namely, [Ag2(1,2-bImb)2](ClO4)2 (1), [Ag2(1,2-bImb)2](BF4)2 (2), [Ag2(1,2-bImb)2](CF3CO2)2.2CH3OH (3.2CH3OH), [Ag2(C4BIm)2](ClO4)2.2DMF (4.2DMF), and [Ag2(C4BIm)2](CF3CO2)2.2H2O (5.2H2O), all of which contain a centrosymmetric, rectangular-shaped cationic disilver(I) metallacycle [Ag2(L)2]2+. In 1-3, a pair of 1,2-bImb ligands takes on the syn conformation to connect two Ag(I) ions to give a compressed rectangle with a transannular Ag...Ag separation of 3.27-3.36 angstroms, whereas in 4 and 5, the pair of planar C4BIm ligands acts in the cis conformation to connect two Ag(I) ions to yield a normal rectangle with a transannular Ag...Ag separation of 7.67-7.91 angstroms. The anions form Ag...O or Ag...F weak interactions in 1-3 and O-H...O or N-H...O hydrogen bonds in 4 and 5 in crystal packing but exhibit no significant influence on the formation of the disilver(I) macrocycles. The solution structure and dynamic behavior of the complexes studied by electrospray ionization mass spectrometry, 1H NMR, and variable-temperature NMR indicated that the dynamic equilibrium between the [Ag2(L)2]2+ cation and the open-ring oligomers or other potential species occurs via solvent-assisted dissociative exchange. The metal-ligand exchange barrier was estimated to be 54.5 kJ mol(-1).  相似文献   

6.
The long, rigid ligands 1,4-bis[(3-pyridyl)ethynyl]benzene (L1) and 1,4-bis[(4-pyridyl)ethynyl]benzene (L2) were used in the synthesis of 10 new organic-inorganic coordination frameworks, each of them adopting different structural motifs. Synthesis, single-crystal X-ray structure determination, and spectroscopic and thermogravimetric analyses are presented. The reactions between M(NO3)2 x xH2O; M = Cd(II), Cu(II), and Co(II); x = 3-6 and Cu(hfac)2 x H2O [hfac = bis(hexafluoroacetylacetonato)] with L1 afforded the following one-dimensional zigzag chain structures: [Cd(C20H12N2)0.5(NO3)(CH3OH)]n (1, monoclinic, C2/c; a = 7.586(1) A, b = 23.222(1) A, c = 13.572(1) A, beta = 92.824(1), Z = 4); [{Cu(C20H12N2)(NO3)2(CH3OH)} x CH3OH]n (2, orthorhombic, P2(1)2(1)2(1); a = 8.589(1) A, b = 15.766(1) A, c = 17.501(1) A, Z = 4); [Co(C20H12N2)2(NO3)2(H2O)2] (5, triclinic, P1; a = 7.493(1) A, b = 8.948(1) A, c = 14.854(1) A, alpha = 100.427(1), beta = 97.324(1), gamma = 110.901(1), Z = 1); [Cu(C20H12N2)(hfac)2]n (4, monoclinic, C2/c, a = 18.828(1) A, b = 14.671(1) A, c = 13.427(1) A, beta = 90.447(1) degrees, Z = 4). Moreover, the minority phase compound formed from Cu(NO3)2 x 3H2O and L1 yielded a metallocyclic chain structure, [Cu(C20H12N2)(NO3)]n (3, triclinic, P; a = 8.728(1) A, b = 10.018(1) A, c = 11.893(1) A, alpha = 109.991(1), beta = 97.109(1), gamma = 115.542(1), Z = 1). In addition to the dinuclear coordination complex 5, all other polymeric structures (1-4) from L1 are composed of interpenetrating 2D and 3D cross-linked zigzag chains via hydrogen-bonding interactions. The reactions between M(NO3)2 x xH2O; M = Cd(II), Cu(II), and Co(II); x = 3-6 and Cu(hfac)2 x H2O [hfac = bis(hexafluoroacetylacetonato)] and L2 were dependent on the nature of the metal center and resulted in the formation of four different interpenetrating and noninterpenetrating compounds (6-10): [Co(C20H12N2)1.5(NO3)2]n (6, triclinic, P; a = 14.172(1) A, b = 15.795(1) A, c = 18.072(1) A, alpha = 115.380(1), beta = 101.319(1), gamma = 93.427(2), Z = 4), which consists of T-shaped building blocks assembled into three-dimensional interpenetrating polycatenated ladders; [Cd(C20H12N2)2(NO3)2]n (7, monoclinic, I2/a; a = 11.371(1) A, b = 20.311(2) A, c = 15.240(2) A, beta = 100.201(2) degrees, Z = 4), which adopts a two-dimensional noninterpenetrating square-grid motif; [Cu(C20H12N2)(hfac)2]n (8, monoclinic, I2/a; a = 11.371(1) A, b = 20.311(2) A, c = 15.240(2) A, beta = 100.201(2) degrees, Z = 4), composed of three sets of distinct one-dimensional linear chains; [Cu(C20H12N2)(EtOH)(NO3)2] [Cu(C20H12N2)1.5(NO3)2] x 2EtOH (9, triclinic, P; a = 12.248(2) A, b = 13.711(3) A, c = 18.257(4) A, alpha = 108.078(4) degrees, beta = 97.890(4) degrees, gamma = 103.139(5) degrees, Z = 2) and [Cu(C20H12N2)(MeOH)(NO3)2] [Cu(C20H12N2)1.5(NO3)2] x 2MeOH (10, triclinic, P; a = 12.136(1) A, b = 13.738(2) A, c = 17.563(3) A, alpha = 107.663(3) degrees, beta = 94.805(4) degrees, gamma = 104.021(4) degrees, Z = 2). Both 9 and 10 stack into infinite interpenetrating ladders through bundles of infinite chains and are described in our preliminary communication.  相似文献   

7.
以硝酸镉、环已二酸(H2CDC)和2,3,5,6-四氟-1,4-二咪唑基二甲苯(FBIX)为原料,在水热条件下得到了1个配位聚合物[Cd(CDC)(FBIX)0.5]n(1),并利用元素分析、红外光谱以及X-射线单晶洐射对其进行了表征。该晶体属三斜晶系,P1 空间群,a=0.880 53(18) nm,b=0.888 31(18) nm,c=1.091 7(2) nm,α=97.349(2)°,β=95.688(2)°,γ=105.495(2)°,V=0.808 1(3) nm3,Dc=1.799 g·cm-3,Z=2,F(000)=434,Goof=1.094,R1=0.025 6,wR2=0.072 3。Cd(Ⅱ)离子通过2个CDC配体桥联形成一维双绞链,再通过FBIX配体连接成二维层状结构。室温下该配合物表现出较强的荧光发射。  相似文献   

8.
The coordination chemistry of the oxadiazole-containing rigid bidentate ligands 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L2) and 2,5-bis(4-aminophenyl)-1,3,4-oxadiazole (L3) with inorganic Ag(I) salts has been investigated. Four new coordination polymers were prepared by solution reactions and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. [[Ag(L2)]SO3CF3]n (1)(triclinic, P1; a = 10.1231(7) A, b = 13.9340-(10) A, c = 13.9284(10) A, alpha = 116.7300(10) degrees, beta = 94.6890(10) degrees, gamma = 108.7540(10) degrees, Z = 4) was obtained by the combination of L2 with AgOTf in a CH2Cl2/CH3OH mixed-solvent system and features a unique one-dimensional elliptical macrocycle-containing chain motif. The approximate dimensions of the rings are ca. 22 x 11 A. [[Ag-(L2)](ClO4)(CH3OH)0.5(H2O)0.5]n (2) (triclinic, P1; a = 8.4894(5) A, b = 13.9092(8) A, c = 14.1596(8) A, alpha = 71.1410(10) degrees, beta = 77.3350(10) degrees, gamma = 81.5370(10) degrees, Z = 4) was generated from the reaction of L2 with AgClO4 in a H2O/CH3OH mixed-solvent system and consists of one-dimensional chains that are linked to each other by weak noncovalent pi-pi interactions into two-dimensional sheets. Uncoordinated ClO4-counterions and guest solvent molecules are located between the layers. [[Ag(L2)]NO3]n (3) was obtained by the combination of L2 with Ag(NO3)2 in a MeOH/H2O mixed-solvent system (triclinic, P1; a = 8.3155(6) A, b = 8.8521(6) A, c = 9.8070(7) A, alpha = 74.8420(10) degrees, beta = 77.2800(10) degrees, gamma = 68.6760(10) degrees, Z = 2). In the solid state, it exhibits an interesting pair of chains associated with C-H...O hydrogen bonds. [[Ag(L3)]SO3CF3]n (4) is generated from L3 and AgSO3CF3 in a CH2Cl2/MeOH mixed-solvent system and crystallizes in the unusual space group Pnnm, with a = 7.9341(4) A, b = 11.5500(5) A, c = 18.1157(8) A, and Z = 4. It adopts a novel three-dimensional structural motif in the solid state with big rhombic channels (ca. 15 x 10 A).  相似文献   

9.
The new versatile multidentate nonchelating ligand 1,2-bis[(2-pyr-imidinyl)-sulfanylmethyl]benzene (bpsb) was designed and prepared for supramolecular syntheses. Self-assembly between silver nitrate and the bpsb ligand resulted in the polymer [Ag4(bpsb)2-(NO3)4]n (1) with a single-stranded helical chain structure. Each bpsb ligand in 1 acts as a tetradentate ligand, in which two sulfur atoms and two nitrogen atoms from different pyrimidine groups coordinate to four Ag atoms in four different directions. The nitrate anions serve as a template for the formation of the helix and are either embedded in the interior of the helix or located in the flank of the helix. Self-assembly between silver perchlorate and the bpsb ligand under the same conditions gave rise to the polymer [Ag2(bpsb)3(ClO4)2]n (2) comprising a two-dimensional lamellar network containing crownlike cavities. The silver atoms in two adjacent layers are arranged staggered in 2. The two-dimensional lamellar network comprising isolated cavities of [Ag6(bpsb)6] is very different from that of usual honeycomb structures.  相似文献   

10.
A series of novel two-dimensional (2D) and three-dimensional (3D) praseodymium coordination polymers, namely, {[Pr3(PDA)4(HPDA)(H2O)8] x 8H2O}n (2), {[Pr2(PDA)3(H2O)3] x H2O}n (3), {[Pr(PDA)(H2O)4] x ClO4}n (4), and { [Pr2(PDA)2(H2O)5SO4] x 2H2O}n (5) (PDA = pyridine-2,6-dicarboxylic anion), was designed and synthesized under hydrothermal conditions. Complexes 1-3 (chainlike polymer, {[Pr(PDA)(HPDA)(H2O)2] x 4H2O}n (1) was also obtained independently by us, although it has been reported recently by Ghosh et al.) were fabricated successfully by simply tuning the Pr/PDA ratio and exhibited various and intriguing topological structures from a 1D chain to a 3D network. While the synthetic strategy of 5 was triggered and further performed only after 1 was structurally characterized. The complexes were characterized by X-ray single-crystal determination, spectroscopic, and variable-temperature magnetic susceptibility analyses. In complex 2 an unusual nanosized square motif as a building block constructed by eight Pr ions was further assembled into a highly ordered 2D grid compound. In complex 3 the decanuclear Pr metal-based structure as a repeat unit interpenetrated to form a novel 3D polymer. Complex 4 was a 3D network polymer fabricated through a hexanuclear Pr ring as a building block, and ClO4- anions as guests were trapped in the cavity. In complex 5 six Pr atoms, two SO4(2-) anions, and carboxylic oxygen bridges constructed an intriguing rectangle structure as a repeat unit in the grid to form a 2D coordination polymer in which the unique bi-bidentate coordination mode of SO4(2-) anion was observed.  相似文献   

11.
The acetylacetonate complexes [Ni(2)L(1)(acac)(MeOH)] x H(2)O, 1 x H(2)O and [Ni(2)L(3)(acac)(MeOH)] x 1.5H(2)O, 2 x 1.5H(2)O (H(3)L(1) = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine and H(3)L(3) = (2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) were prepared and fully characterised. Their crystal structures show that they are dinuclear complexes, extended into chains by hydrogen bond interactions. These compounds were used as starting materials for the isolation of the corresponding [Ni(2)HL(x)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x n MeOH and [Ni(2)HL(x)(O(2)CCH(2)CO(2))(H(2)O)]x nH(2)O dicarboxylate complexes (x = 1, 3; n = 1-3). The crystal structures of [Ni(2)HL(1)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x MeOH, 3 x MeOH, [Ni(2)HL(3)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x 3 MeOH, 4 x 3 MeOH and [Ni(2)HL(1)(O(2)CCH(2)CO(2))(H(2)O)] x 2.5H(2)O x 0.25 MeOH x MeCN, 5 x 2.5H(2)O x 0.25 MeOH x MeCN, were solved. Complexes 3-5 show dinuclear [Ni(2)HL(x)(dicarboxylate)(H(2)O)] units, expanded through hydrogen bonds that involve carboxylate and water ligands, as well as solvate molecules. The variable temperature magnetic susceptibilities of all the complexes show an intramolecular ferromagnetic coupling between the Ni(II) ions, which is attempted to be rationalized by comparison with previous results and in the light of molecular orbital treatment. Magnetisation measurements are in accord with a S = 2 ground state in all cases.  相似文献   

12.
Zinc metal reduction of the cobalt(III) complex [Co(1,4-bcc)](+) (1,4-bcc = 1,4-bis-carboxymethylcyclam) produces the corresponding cobalt(II) complex which crystallises as the coordination polymer {[Co(1,4-bcc)]ZnCl(2)}(n). A method has been developed for removal of the cobalt(III) ion from [Co(1,4-bcc)](+) and isolation of the free ligand as its hydrochloride salt, H(2)(1,4-bcc).4HCl. This has been used for the preparation of new metal complexes, and the syntheses and characterisation of the copper(ii), nickel(ii), zinc(ii) and chromium(iii) complexes containing the 1,4-bcc ligand are described. X-Ray crystal structures of {[Co(1,4-bcc)]ZnCl(2)}(n).2.5H(2)O, {[Cu(1,4-bcc)]CuCl(2)}(n).0.25MeOH.H(2)O and [Cu(1,4-bcc)H]ClO(4) show the complexes to have the trans(O) geometry of the 1,4-bcc ligand, while the structure of [Cr(1,4-bcc)H(0.5)](ClO(4))(1.5).EtOH exhibits the cis(O) configuration.  相似文献   

13.
An H  Li Y  Wang E  Xiao D  Sun C  Xu L 《Inorganic chemistry》2005,44(17):6062-6070
Three unusual compounds based on polyoxometalate building blocks, [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2][Ag2IMo6O24(H2O)4] x 6.25H2O (1), [(H2O)4Na2(C6NO2H5)6Ag3][IMo6O24] x 6H2O (2), and (C6NO2H6)2[(C6NO2H5)2Ag][Cr(OH)6Mo6O18] x 4H2O (3), have been synthesized and characterized by elemental analysis; IR, XPS, and ESR spectroscopy; TG analysis; and single-crystal X-ray diffraction. Compound 1 is constructed from the cationic two-dimensional (2D) coordination polymer sheets which are constituted of [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2]3+ and anionic [Ag2IMo6O24(H2O)4]3- chains as pillars, forming a three-dimensional (3D) supramolecular framework via weak Ag-O interactions. Compound 2 is composed of the well-defined [IMo6O24]5- building blocks, which are linked through trinuclear Ag-pyridine-3-carboxylic acid, [(C6NO2H5)6Ag3]3+, fragments into a one-dimensional (1D) hybrid chain; adjacent chains are further connected by sodium cations to yield a novel 2D network. Compound 3 has a 1D chainlike structure constructed from [Cr(OH)6Mo6O18]3- building blocks and Ag-pyridine-4-carboxylic acid coordination units. The crystal data for these compounds are the following: 1, triclinic, P1, a = 13.280(3) A, b = 13.641(3) A, c = 16.356(3) A, alpha = 89.68(3) degrees, beta = 88.31(3) degrees, gamma = 75.87(3) degrees, Z = 2; 2, triclinic, P1, a = 11.978(2) A, b = 12.008(2) A, c = 13.607(3) A, alpha = 116.14(3) degrees, beta = 108.85(3) degrees, gamma = 93.86(3) degrees, Z = 1; 3, triclinic, P1, a = 10.458(2) A, b = 10.644(2) A, c = 12.295(3) A, alpha = 97.40(3) degrees, beta = 112.38(3) degrees, gamma = 113.59(3) degrees, Z = 1.  相似文献   

14.
Wang X  Vittal JJ 《Inorganic chemistry》2003,42(17):5135-5142
The influences of the nature of reactants and water on the self-assembly of cationic Cu(II) complex structures containing N-(2-pyridylmethyl)glycine (Hpgly) and N-(2-pyridylmethyl)-l-alanine (Hpala) ligands have been investigated. A metallamacrocycle [Cu(6)(pgly)(3)(spgly)(3)] (ClO(4))(6).9H(2)O has been formed by the reaction of [Cu(pgly)(2)].2H(2)O with Cu(ClO(4))(2).6H(2)O. The hexameric cation has Schiff base and reduced Schiff base ligands alternatively bonded to Cu(II) to provide cyclohexane-like conformation with a cavity diameter of 9.4 A. The reaction of Cu(ClO(4))(2).6H(2)O with Hpgly.HCl yielded [Cu(pgly)(H(2)O)](ClO(4)), which is presumed to have 1D coordination polymeric structure. A [K subset [12-MC-3]] metallacrown, [K(ClO(4))(3)[Cu(3)(pala)(3)]](ClO(4)) has been isolated by reacting Cu(ClO(4))(2) with Kpala in MeCN/MeOH. This [K subset [12-MC-3]] metallacrown further reacts with water to form an infinite 1D coordination polymer [Cu(pala)(H(2)O)(ClO(4))](n)(), which can also be obtained by conducting the reaction in aqueous MeOH.  相似文献   

15.
以Co(ClO4)2·6H2O/Cu(ClO4)2·6H2O、1,4-双(咪唑基-1-基)丁烷(bib)/1,4-双(咪唑基-1-基)苯(bix)和4,4-(1,3-苯基双(亚甲基氧基))二苯甲酸(H2pmda)为原料,在水热条件下反应,得到了2个配合物{[Co(bib)3](ClO4)2}n(1)和{[Cu3(bix)(4.5)](ClO4)3}n(2)(H2pmda未参与反应),对它们进行了元素分析、红外光谱、荧光光谱、单晶和粉末X射线衍射表征。配合物1属于三方晶系,R 空间群,a=b=1.39337(5)nm,c=1.74054(13)nm,V=2.9265(3)nm^3,Mr=828.59,Dc=1.410g·cm^-3,F(000)=1293,μ=0.639mm^-1,Z=3,R1=0.0611,wR2=0.1937(I>(2σ(I))。配合物2也属于三方晶系,P 空间群,a=b=2.33441(15)nm,c=0.71511(9)nm,V=3.3749(5)nm^3,Mr=1561.28,Dc=1.536g·cm^-3,F(000)=1602,μ=1.131mm^-1,Z=2,R1=0.0439,wR2=0.1090(I>(2σ(I))。单晶结构分析表明配合物1为含有36元环的二维网状结构,配合物2为含有84元环的二维网状结构,并通过氢键或π-π堆积使它们扩展成超分子结构。此外,还研究了2个配合物的荧光性质。  相似文献   

16.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

17.
Several new Cu(II) derivatives of the 1,3-bis(dimethylamino)-2-propanolato (bdmap) ligand with formula [Cu(2)(bdmap)(acac)(NH(3))(3)(MeOH)](ClO(4))(2), [Cu(2)(bdmap)(NO(2))(3)(H(2)O)](4) and [Cu(2)(bdmap)(OH)(ox)(0.5)(H(2)O)(2)](n)(ClO(4))(n)xnH(2)O were synthesized and characterized both structurally and magnetically. Dinuclear compound crystallizes in the monoclinic system, space group P2(1)/c, octanuclear compound crystallizes in the triclinic space group P1 and the 1-D alternating system crystallizes in the monoclinic system, space group P2/n. Magnetic analysis indicates strong antiferromagnetic coupling for all derivatives, mainly due to the interaction through the alkoxo O-atom of the bdmap ligand. The effect on the magnetic behaviour of the additional bridging ligands is analysed.  相似文献   

18.
Pyrazine-2,3,5,6-tetracarboxylic acid (pytcH(4)) reacts with Cu(NO(3))(2)x6H(2)O in 1:2 molar ratio in the presence of pyridine (py) vapor to form blue crystals of a coordination polymer with the empirical formula [Cu(2.5)(pytc)(py)(8)(NO(3)(-))x10H(2)O](n). Four such polymeric chains gather around a hexadecameric water cluster to form an overall 3D metal-organic framework structure. Once the water molecules are removed, the 3D structure breaks down. It presents a new mode of association of water molecules not predicted theoretically or found experimentally.  相似文献   

19.
Song L  Li J  Lin P  Li Z  Li T  Du S  Wu X 《Inorganic chemistry》2006,45(25):10155-10161
Reactions of [WES3]2- (E = S, O) with CuX (X = NCS, CN, I) in the presence of bix (bix = 1,4-bis(imidazole-1-ylmethyl)benzene) in DMF or CH3CN resulted in the formation of two novel 2D --> 3D interpenetrating coordination polymers [S2W2S6Cu4(bix)2]n (1) and {[WS4Cu4(NCS)2(bix)3].CH3CN}n (2), a noninterpenetrating 3D polymer {[WS4Cu2(bix)].DMF}n (3), and two 2D sheet polymers [WS4Cu3(CN)(bix)]n (4) and {[OWS3Cu3(bix)2][I].DMF.2H2O}n (5), depending on the reaction temperature and the reagents used. Compound 1 contains a hexagonal prism of W2Cu4S6 cluster core, which serves as a 4-connecting node to link equivalent nodes via bix ligands, forming a 2D (4,4) net. In 2, a WCu4S4 core, which also acts as a 4-connecting node, connects the neighboring nodes either through single or double bix bridges, affording a different 2D (4,4) sheet. Inclined interpenetration occurs between two stacks of 2D sheets in the total structure of 1, while 2 involves a parallel interpenetration between the adjacent layers, both creating a 3D network. Compounds 1 and 2 represent the first examples of interpenetrating (4,4) frameworks with clusters as nodes and bidentate pyridyl-based ligands as linkers. Unlike 1 and 2, compound 3 has a noninterpenetrating 3D network, which is composed of the inorganic 1D (WS4Cu2)n chains linked by cis and trans bix ligands. Compound 4 features an inorganic 1D (WS4Cu3)n chain structure, which is linked by CN groups and bix ligands to form an infinite 2D network. Compound 5 is a 2D layer polymer with large inner cavities.  相似文献   

20.
Coordination complexes of the ligand H3L [1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene] with Cu(II) are reported. Clusters showing various nuclearities or modes of supramolecular organization have been prepared by slightly changing the reaction conditions and have been crystallographically characterized. The reaction of H3L with one equivalent of Cu(OAc)2 in DMF yields the dinuclear complex [Cu2(HL)2(dmf)2] (1). Reaction in MeOH of H3L with an increased amount of metal, in the form of Cu(NO3)2, and excess strong base (nBu4NOH) affords the cluster [Cu8(L)2(OMe)8(NO3)2] (2). Complex 2 is a dimer of two linear [Cu4] arrays bridged by methoxide ligands, where the polynucleating ligand is fully deprotonated. The [Cu4]2 clusters are linked to each other by NO3- bridges to form one-dimensional coordination polymers. The link between [Cu8] units and their relative spatial positioning can be modified by changing the anion of the Cu(II) salt, as demonstrated by the synthesis of the cluster polymers [Cu8(L)2(OMe)8Cl2] (3) and [Cu8(L)(OMe)7.86Br2.14] (4), where only NO3- has been replaced by Cl- or Br-, respectively. Similarly, when ClO4- is used, compound [Cu8(L)2(OMe)8(ClO4)2(MeOH)4] (5) can be isolated. It contains independent [Cu8] units. A slight change in the stoichiometry of the reaction leading to 2 affords the related complex catena-[Cu4(L)(OMe)3(NO3)2(H2O)0.36] (6). This polymer contains essentially the same [Cu4] moiety as 2, albeit organized in a completely different arrangement. Each [Cu4] unit in 6 is linked by OMe- ligands to two such equivalent groups to form an infinite chain. Magnetic susceptibility measurements reveal weak antiferromagnetic exchange between Cu(II) centers in 1 (J = -0.73 cm(-1)) and strong antiferromagnetic coupling within [Cu4] chains in 2, 5, and 6 (most negative J values of -113.8 and -177.3 cm(-1) for 2 and 6, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号