首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
A manganese(II) complex of 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) has been synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR, and UV–Vis spectroscopic techniques. Oxidation of alcohols to their corresponding aldehydes and ketones was conducted by this catalyst using oxone (2KHSO5·KHSO4·K2SO4) as an oxidant under biphasic reaction conditions (CH2Cl2/H2O) and tetra-n-butylammonium bromide as phase transfer agent under air at room temperature. Easy preparation, mild reaction conditions, high yields of the products, short reaction times, no further oxidation to the corresponding carboxylic acids, high selectivity and inexpensive reagents make this catalytic system a useful oxidation method for aliphatic and benzylic alcohols.  相似文献   

2.
The oxidation of alkanes to ketones and lactones by Oxone® (KHSO4×K2SO4×2KHSO5) catalyzed by manganese porphyrins has been studied in an anhydrous two-phase (solid Oxone®/DCE solution) catalytic system. Under the experimental conditions adopted, i.e., an excess of Oxone® over the organic substrate and catalytic amount of Mn(TDCPP)Cl, almost complete hydrocarbon conversions are obtained. Acyclic alkanes give ketones as main oxygenated product whereas cyclic alkanes give mainly lactones together with minor amounts of alcohols and ketones. The overall process leading to lactones involves two subsequent manganese porphyrin catalyzed oxidative steps and a stoichiometric reaction involving monopersulfate and the intermediate ketone. The lack of a water phase and of strong acids prevents the hydrolysis of the lactones formed. The products are obtained in yields ranging from low to fair depending on the nature of substrate, catalyst, and on phase transfer agent concentration.  相似文献   

3.
A new heterogeneous catalyst containing a copper(II) Schiff base complex covalently immobilized on the surface of silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2‐Schiff base‐Cu(II)) was synthesized. Characterization of this catalyst was performed using various techniques. The catalytic potential of the catalyst was investigated for the oxidation of various alkenes (styrene, α‐methylstyrene, cyclooctene, cyclohexene and norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n ‐butanol) using tert ‐butyl hydroperoxide as oxidant. The catalytic investigations revealed that Fe3O4@SiO2‐Schiff base‐Cu(II) was especially efficient for the oxidation of norbornene and benzyl alcohol. The results showed that norbornene epoxide and benzoic acid were obtained with 100 and 87% selectivity, respectively. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in catalytic activity were other advantages of this catalyst  相似文献   

4.
A new magnetic nanoparticle‐supported Schiff base complex of manganese was prepared via the copper‐catalyzed ‘click’ reaction of an aminosalicylidene manganese complex bearing terminal alkynyl with azide‐functionalized shell–core magnetic nanoparticles. The as‐prepared catalyst was applied in the oxidation of alcohols to corresponding aldehydes or ketones with high yield and selectivity when the reaction was carried out in dimethylsulfoxide at 110°C for 4 h using tert‐butyl hydroperoxide as oxidant. Moreover, the catalyst can be easily separated from the reaction mixture using an external magnet and reused five times with no significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Two new Mn(II) complexes, [Mn(C6H5COO)(H2O)(phen)2](ClO4)(CH3OH) ( 1 ) and [Mn2(μ‐C6H5COO)2(bipy)4]?2(ClO4) ( 2 ) (phen = 1,10‐phenanthroline; bipy = 2,2′‐bipyridine), were synthesized and characterized using UV–visible and infrared spectroscopies and single‐crystal X‐ray diffraction analyses. Complexes 1 and 2 have six‐coordinate octahedral geometry around the Mn(II) centre. Complex 1 is a monomer and consists of a deprotonated monodentate benzoate ligand together with two neutral bidentate amine ligands (phen) and a water molecule. Complex 2 has a dinuclear structure in which two Mn(II) ions share two carboxylate groups, adopting a two‐atom bridging mode, and two chelated bipy ligands. Both complexes catalyse the oxidation of alcohols and alkenes in a homogeneous catalytic system consisting of the Mn(II) complex and tert‐butyl hydroperoxide (TBHP) in acetonitrile. The system yields good to quantitative conversions of various alkenes and alcohols, such as styrene, ethylbenzene and cyclohexene to their corresponding ketones, and primary alcohols and 1‐octanol, 1‐heptanol, cyclohexanol, benzyl alcohols and cinnamyl alcohol to their corresponding aldehydes and carboxylic acids. Complexes 1 and 2 exhibit very high activity in the oxidation of cyclohexene to cyclohexanone (ca 80% selectivity) as the main product (ca 94% conversion in 1 h) and of cinnamyl alcohol to cinnamaldehyde (ca 64% selectivity) as the main product (ca 100% conversion in 0.5 h) with TBHP at 70°C in acetonitrile. In addition, optimum reaction conditions were also determined for benzyl alcohol with complexes 1 and 2 and TBHP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Cu(II)–Schiff base complex‐functionalized magnetic Fe3O4 nanoparticles were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy techniques. This compound acts as a highly active and selective catalyst for the oxidation of sulfides and thiols. These reactions can be carried out in ethanol or solvent‐free conditions in the presence of hydrogen peroxide with complete selectivity and very high conversion under mild reaction conditions. The designed catalytic system prevents effectively the over‐oxidation of sulfides to sulfones. Separation and recycling can also be easily done using a simple magnetic separation process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A series of water‐insoluble iron(III) and manganese(III) porphyrins, FeT(2‐CH3)PPCl, FeT(4‐OCH3)PPCl, FeT(2‐Cl)PPCl, FeTPPCl, MnT(2‐CH3)PPOAc, MnT(4‐OCH3)PPOAc, MnT(2‐Cl)PPOAc and MnTPPOAc, in the presence of imidazole (ImH), F?, Cl?, Br? and acetate were used as catalysts for the aqueous‐phase heterogeneous oxidation of styrenes to the corresponding epoxides and aldehydes with sodium periodate. Also, the effect of various reaction parameters such as reaction time, molar ratio of catalyst to axial base, type of axial base, molar ratio of olefin to oxidant and nature of metal centre on the activity and oxidative stability of the catalysts and the product selectivity was investigated. Higher catalytic activities were found for the iron complexes. Interestingly, the selectivity towards the formation of epoxide and aldehyde (or acetophenone) was significantly influenced by the type of axial base. Furthermore, Br? and ImH were found to be the most efficient co‐catalysts for the oxidation of olefins performed in the presence of the manganese and iron porphyrins, respectively. The optimized molar ratio of catalyst to axial base was different for various axial bases. Also, the order of co‐catalyst activity of the axial bases obtained in aqueous medium was different from that reported for organic solvents. The use of a convenient axial base under optimum reaction catalyst to co‐catalyst molar ratio in the presence of the manganese porphyrin gave the oxidative products with a conversion of ca 100% in a reaction time of less than 3 h. However, the catalytic activity of the iron porphyrins could not be effectively improved by increasing the catalyst to co‐catalyst molar ratio.  相似文献   

8.
Herein, we have prepared a new Cu(II) Schiff base complex supported onto the surface of modified Fe3O4 nanoparticles as highly stable, heterogeneous and magnetically recyclable nanocatalyst for the selective aerobic oxidation of different alcohols. The structure, morphology, chemical composition and magnetic property of the nanocatalyst and its precursors were characterized using FT‐IR, TGA, AAS, ICP‐AES, XRD, SEM, EDS, VSM and N2 adsorption–desorption analyses. Characterization results exhibited the uniform spherical morphology for nanocatalyst and its precursors. A promising eco‐friendly method with short reaction time and high conversion and selectivity for oxidation of various primary and secondary alcohols under O2 atmosphere condition was achieved. The synthesized nanocatalyst could be recovered easily by applying an external magnetic field and reused for least eight subsequent reaction cycles with only negligible deterioration in catalytic performance.  相似文献   

9.
It is established that Oxone (peroxymonosulfate, 2KHSO5 · KHSO4 · K2SO4) oxidizes benzene to p-quinone very efficiently and selectively in a homogeneous solution in aqueous acetonitrile in the presence of a catalyst, i.e., dimeric manganese(IV) complex [LMn(O)3MnL](PF6)2 where L is 1,4,7-trimethyl-1,4,7-triazacyclononane, and a cocatalyst, i.e., oxalic acid. The dependences of the maximum rate of quinone accumulation on the initial concentrations of reagents are studied. It is proposed that benzene is oxidized by the manganyl particle containing the Mn(V)=O fragment that forms upon the reaction of the reduced form of the starting dimeric manganese complex with Oxone.  相似文献   

10.
By using a dimeric ruthenium complex in combination with tert‐butyl hydrogen peroxide (TBHP) as stoichiometric oxidant, a mild and efficient protocol for the oxidation of secondary benzylic alcohols was obtained, thereby giving the corresponding ketones in high yields within 4 h. However, in the oxidation of aliphatic alcohols, the TBHP protocol suffered from low conversions owing to a competing Ru‐catalyzed disproportionation of the oxidant. Gratifyingly, by switching to Oxone (2 KHSO5 ? KHSO4 ? K2SO4 triple salt) as stoichiometric oxidant, a more efficient and robust system was obtained that allowed for the oxidation of a wide range of aliphatic and benzylic secondary alcohols, giving the corresponding ketones in excellent yields. The mechanism for these reactions is believed to involve a high‐valent RuV–oxo species. We provide support for such an intermediate by means of mechanistic studies.  相似文献   

11.
A Tri‐µ‐O‐S‐O coordinative manganese dimer: [Mn2(SO4)2(phen)4]·CH3OH (phen1,10‐phenanthroline) ( 1 ) was yielded by the reaction of 1,10‐phenanthroline and MnSO4·H2O in a mixed solvent of methanol and acetonitrile under room temperature and was structurally characterized. Single crystal analysis shows that complex 1 has polymeric structure based on binuclear Mn(II) units bridged by O‐S‐O groups of two SO42− anion. The UV spectrum of the complex clarifies that each metal‐organic building unit parallels with each other through the Π‐Π interactions of face‐to‐face separations of two 1,10‐phen planes among the complex, forming a layered structure. And the electronic paramagnetic resonance (EPR) signal clearly indicates that those manganese atoms in complex 1 are in +2 oxidation states.  相似文献   

12.
The mononuclear complex [Mn(tptz)(CH3COO)(OH2)2]NO3 (1) was investigated by electrospray ionization mass spectrometry in aqueous solution at pH 4.5. Electrospray ionization mass spectrometry shows that mononuclear and dinuclear manganese cationic species are present in solution, probably in equilibrium with neutral 1. An experiment showed that the most important reaction in the presence of oxone (2KHSO5·KHSO4·K2SO4) is decoordination.  相似文献   

13.
The kinetics of Ru(III)‐catalyzed and Hg(II)‐co‐catalyzed oxidation of D‐glucose (Glc) and cellobiose (Cel) by N‐bromoacetamide (NBA) in the presence of perchloric acid at 40 °C have been investigated. The reactions exhibit the first order kinetics with respect to NBA, but tend towards the zeroth order to higher NBA. The reactions are the first order with respect to Ru(III) and are fractional positive order with respect to [reducing sugar]. Positive effect of Cl? and Hg(OAc)2 on the rate of reaction is also evident in the oxidation of both reducing sugars. A negative effect of variation of H+ and acetamide was observed whereas the ionic strength (µ) of the medium had no influence on the oxidation rate. The rate of reaction decreased with the increase in dielectric constant and this enabled the computation of dAB, the size of the activated complex. Various activation parameters have been evaluated and suitable explanation for the formation of the most reactive activated complex has been given. The main products of the oxidation are the corresponding arabinonic acid and formic acid. HOBr and [RuCl3(H2O)2OH]? were postulated as the reactive species of oxidant and catalyst respectively. A common mechanism, consistent with the kinetic data and supported by the observed effect of ionic strength, dielectric constant and multiple regression analysis, has been proposed. Formation of complex species such as [RuCl3·S·(H2O)OH]? and RuCl3·S·OHgBr·OH during the course of reaction was fully supported by kinetic and spectral evidences.  相似文献   

14.
In this work, a new heterogeneous catalyst (SBA‐15/Im/WO42?) was prepared, and then its performance in the oxidation of organic sulfides was studied (using 30% H2O2 as green oxidant under neutral reaction conditions). This organic–inorganic hybrid mesoporous material was characterized by various techniques, such as FT‐IR, inductively coupled plasma, X‐ray powder diffraction, high‐resolution‐transmission electron microscopy, N2 adsorption–desorption and thermogravimetric analysis. The catalyst was also applied to the selective oxidation of various sulfides. The hybrid catalyst was easily recovered, and was very stable and retained good activity for at least five successive runs without any additional activation. Moreover, there was no remarkable decrease in the activity and selectivity of the catalyst. The products could be easily isolated by just removing the solvent after filtering the catalyst. The yields of the catalytic productions through this catalyst were in the range from 75% to 97%.  相似文献   

15.
The oxidation of 4‐substituted phenyl phenyl sulfides was carried out with several oxo(salen)manganese(V) complexes in MeCN/H2O 9 : 1. The kinetic data show that the reaction is first‐order each in the oxidant and sulfide. Electron‐attracting substituents in the sulfides and electron‐releasing substituents in salen of the oxo(salen)manganese(V) complexes reduce the rate of oxidation. A Hammett analysis of the rate constants for the oxidation of 4‐substituted phenyl phenyl sulfides gives a negative ρ value (ρ=?2.16) indicating an electron‐deficient transition state. The log k2 values observed in the oxidation of each 4‐substituted phenyl phenyl sulfide by substituted oxo(salen)manganese(V) complexes also correlate with Hammett σ constants, giving a positive ρ value. The substituent‐, acid‐, and solvent‐effect studies indicate direct O‐atom transfer from the oxidant to the substrate in the rate‐determining step.  相似文献   

16.
Copper(II) complex 1 catalyzes the oxidation of sulfides to sulfoxides with 30% H2O2 in high yields. Addition of a catalytic amount of TEMPO to the reaction mixture enhances the conversion and selectivity. Complex 1 can be recycled without loss of activity.  相似文献   

17.
We show that the dirhodium(II) tetraamidinate complex Rh2(Msip)4 efficiently catalyzes the oxidation of activated secondary alcohols at only 0.1 mol% loading. In this approach, we oxidized various benzylic, allylic and propargylic alcohols to the corresponding carbonyl compounds under mild aqueous conditions using the inexpensive oxidant T‐HYDRO® (70 wt% aqueous tert‐butyl hydroperoxide). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The title manganese(III) phthalocyaninate (Pc) complex, viz. iodo­[phthalocyaninato(2−)]­manganese(III) hemi­(diiodine), [Mn(C32H16N8)I]·0.5I2 or (MnPcI)2·I2, was obtained from the reaction of pure powdered manganese with phthalo­nitrile under oxidation conditions of iodine vapour. The phthalocyaninato(2−) residue is not strictly planar and the Mn atom is five‐coordinate, having distorted square‐pyramidal geometry and residing 0.262 (2) Å above the plane defined by the four iso­indole N atoms of the phthalocyaninate macrocycle. The neutral I2 mol­ecule bridges the iodo­[phthalocyaninato(2−)]­manganese(III) mol­ecules, forming a centrosymmetric dimeric structure.  相似文献   

19.
A chiral manganese porphyrin complex with a two‐point hydrogen‐bonding site was prepared and probed in catalytic C?H oxygenation reactions of 3,4‐dihydroquinolones. The desired oxygenation occurred with perfect site selectivity at the C4 methylene group and with high enantioselectivity in favor of the respective 4S‐configured secondary alcohols (12 examples, 29–97 % conversion, 19–68 % yield, 87–99 % ee). Mechanistic studies support the hypothesis that the reaction proceeds through a rate‐ and selectivity‐determining attack of the reactive manganese oxo complex at the hydrogen‐bound substrate and an oxygen transfer by a rebound mechanism.  相似文献   

20.
An environmentally friendly and efficient process whereby FeCl3?6H2O/2,2,6,6‐tetramethylpiperidine N‐oxyl (TEMPO)‐catalyzed oxidation of alcohols to the corresponding aldehydes and ketones is accomplished in the presence of silica gel using molecular oxygen or air as the terminal oxidant. The electron‐deficient benzyl alcohol was smoothly oxidized to the corresponding aldehydes with up to 99% isolated yield. It was found that silica gel not only could enhance the catalytic reaction rate but also increase the selectivity for the product. The high performance of FeCl3?6H2O/TEMPO catalyst system in the presence of silica gel might be attributed to the surface silanol groups. UV–visible spectra analysis showed that the Fe (III)–TEMPO complex could serve as the active intermediate species in the present catalytic system. A plausible mechanism of the catalytic system is proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号