首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two new homobinuclear manganese compounds with mixed ligands, [Mn2(μ1,1–2‐NH2C6H4COO)2(phen)4](ClO4)2(CH3OH) ( 1 ), and [Mn2(μ1,3–2‐NH2C6H4COO)2(bipy)4](ClO4)2 ( 2 ) (NH2C6H4COOH = anthranilic acid, bipy = 2,2′‐bipyridine, phen = 1,10‐ phenanthroline) were synthesized and thoroughly characterized by elemental analysis, IR, UV and single crystal X‐ray crystallography. X‐ray structure analysis shows that in the mono‐ and bidentate carboxylate bridged compounds, Mn–Mn distances of 1 and 2 are 3,461 Å, and 4,639 Å, respectively. The energy of the compounds was determined with a DFT (Density Functional Theory) calculation on B3LYP/6‐31G(d,p) optimized geometry by using the B3LYP/6‐31G(d,p) basis set. These compounds acts as biomimetic catalyst and show catalase‐like activity for the hydrogen peroxide dismutation at room temperature in different solvents with remarkable activity (TOF, Turnover frequency = mol of subst./(mol of cat. × time)) up to 12640 h?1 with 1 , and 17910 h?1 with 2 in Tris–HCl buffer). Moreover, the catalytic activity of 1 and 2 has been studied for oxidation of alcohols (cinnamyl alcohol, benzyl alcohol, cyclohexanol, 1‐octanol and 1‐heptanol) and alkenes (cyclohexene, styrene, ethyl benzene, 1‐octene and 1‐hexene) in a homogeneous catalytic system consisting t‐butylhydroperoxide (TBHP) as an oxidant in acetonitrile. Both compounds exhibited very high activity in the oxidation of cyclohexene to cyclohexanone (~80% selectivity, ~99% conversion in 1 h, TOF = 243 h?1 and 226 h?1) and cinnamyl alcohol to cinnamaldehyde (~64% selectivity) as the main product with very high TOF value (9180 h?1 and 13040 h?1 in the first minute of reaction) (~100% conversion in 0.5 h) with TBHP at 70 °C in acetonitrile, for 1 and 2 , respectively.  相似文献   

2.
Abstract

A novel manganese compound, [Mn2(μ1,3-6-CH3-2-NH2C6H4COO)2(bipy)4](ClO4)2 (bipy = 2,2′-bipyridine), was synthesized and used as a catalyst precursor in the oxidation of alkenes and primary alcohols to corresponding aldehydes, ketones, and acids. The six-coordinate compound has a binuclear structure in which two Mn(II) ions adopt a syn-anti μ1,3-bridging mode with two carboxylate groups and two chelated bipy ligands. The compound exhibits good activity in the oxidation of cyclohexene to 2-cyclohexene-1-one as the major product (93% conv. in 3 h, 79.3% selectivity) and of cinnamyl alcohol to cinnamaldehyde as the major product with 46% selectivity (100% conv. in 1.5 h) with tert-butyl hydroperoxide (TBHP) in acetonitrile at 70 °C. Furthermore, the catalase-like activity of the compound was studied in different solvents (acetonitrile, methanol, Tris-HCl buffer; TOF = 29,910 h?1 in Tris-HCl buffer).  相似文献   

3.
New 3,3‐diphenylpropoxyphthalonitrile (5) was obtained from 3,3‐diphenylpropanol (3) and 4‐nitrophthalonitrile (4) with K2CO3 in DMF at 50 °C. The novel cobalt(II) phthalocyanine complexes, tetrakis‐[2‐(1,4‐dioxa‐8‐azaspiro[4.5]dec‐8‐yl)ethoxy] phthalocyaninato cobalt(II) (2) and tetrakis‐(3,3‐diphenylpropoxy)phthalocyaninato cobalt(II) (6) were prepared by the reaction of the phthalonitrile derivatives 1 and 5 with CoCl2 by microwave irradiation in 2‐(dimethylamino)ethanol for at 175 °C, 350 W for 7 and 10 min, respectively. These new cobalt(II)phthalocyanine complexes were characterized by spectroscopic methods (IR, UV–visible and mass spectroscopy) as well as elemental analysis. Complexes 2 and 6 are employed as catalyst for the oxidation of cyclohexene using tert‐butyl hydroperoxide (TBHP), m‐chloroperoxybenzoic acid (m‐CPBA), aerobic oxygen and hydrogen peroxide (H2O2) as oxidant. It is observed that both complexes can selectively oxidize cyclohexene to give 2‐cyclohexene‐1‐ol as major product, and 2‐cyclohexen‐1‐one and cyclohexene oxide as minor products. TBHP was found to be the best oxidant since minimal destruction of the catalyst, higher selectivity and conversion were observed in the products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The reaction of Pb(CH3COO)2·3H2O with N‐benzesulfonyl‐L‐glutamic acid in the presence of 2, 2′‐bipyridine (bipy) or 1,10‐phenanthroline (phen) produced two novel complexes [Pb2(Bs‐glu)2(bipy)2] ( 1 ) and [Pb2(Bs‐glu)2(phen)2] ( 2 ) (Bs‐glu = N‐benzesulfonyl‐L‐glutamic acid dianion). In 1 chains bearing alternative 16‐membered rings and Pb2O3 nodes are constructed from the interactions of PbII ions with the carboxylates of Bs‐glu ligands. To the best of our knowledge, this is the first lead(II) complex of carboxylates with the formation of chains of Pb2O3. In 2 the 16‐membered ring units are connected by centrosymmetric Pb2O2 nodes to form chains. Complexes 1 and 2 construct the 3‐D supramolecular architectures through versatile hydrogen bonds and π‐π stacking interactions.  相似文献   

5.
Five new transition metal complexes [Cu(HL)2(H2O)2] ( 1 ), [Cu(HL)2(phen)] ( 2 ), [Cu(HL)2(H2O)]2(4,4′‐bipy) ( 3 ), [Zn(HL)2(H2O)2]·(4,4′‐bipy) ( 4 ), [Ag(HL)(4,4′‐bipy)]n ( 5 ), (H2L=5‐chloro‐1‐phenyl‐1H‐pyrazole‐3,4‐dicarboxylic acid, phen=1,10‐phenanthroline; 4,4′‐bipy=4,4′‐bipyridine) have been synthesized and characterized. Complexes 1 , 2 and 4 exhibit monomeric structures, 3 shows a dinuclear structure, 5 displays 1D chain structure, and all extend to 3D supramolecular network via rich hydrogen bonds. Complexes 1 , 2 , 3 , 5 comprise single helical chains, while complex 4 generates quadruple‐stranded helical chains. Furthermore, the antibacterial activities of the titled complexes against bacterial species, three Gram positive bacteria (Staphylococcus aureus, Bacillus subtilis and Candida albicans) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were studied and compared to the activities of free ligands by using the microdilution method.  相似文献   

6.
Mercury(II) complexes with 4,4′‐bipyridine (4,4′‐bipy) ligand were synthesized and characterized by elemental analysis, and IR, 1H‐ and 13C‐NMR spectroscopy. The structures of the complexes [Hg3(4,4′‐bipy)2(CH3COO)2(SCN)4]n ( 1 ), [Hg5(4,4′‐bipy)5(SCN)10]n ( 2 ), [Hg2(4,4′‐bipy)2(CH3COO)2]n(ClO4)2n ( 3 ), and [Hg(4,4′‐bipy)I2]n ( 4 ) were determined by X‐ray crystallography. The single‐crystal X‐ray data show that 2 and 4 are one‐dimensional zigzag polymers with four‐coordinate Hg‐atoms, whereas 1 is a one‐dimensional helical chain with two four‐coordinate and one six‐coordinate Hg‐atom. Complex 3 is a two‐dimensional polymer with a five‐coordinate Hg‐atom. These results show the capacity of the Hg‐ion to act as a soft acid that is capable to form compounds with coordination numbers four, five, and six and consequently to produce different forms of coordination polymers, containing one‐ and two‐dimensional networks.  相似文献   

7.
The perchlorate salt of the dicationic bipy–ruthenium complex cis‐[Ru(6,6′‐Cl2bipy)2(H2O)2]2+ effectively catalyzes addition of β‐diketones to secondary alcohols and styrenes to yield the α‐alkylated β‐diketones. In a catalytic addition reaction of acetylacetone to 1‐phenylethanol, the κ2‐acetylacetonate complex [Ru(6,6′‐Cl2bipy)2(κ2‐acac)]ClO4 was isolated after the catalysis; this complex is readily synthesized by reacting cis‐[Ru(6,6′‐Cl2bipy)2(H2O)2](ClO4)2 with acetylacetone. [Ru(6,6′‐Cl2bipy)2(κ2‐acac)]ClO4 is unreactive toward 1‐phenylethanol in the presence of HClO4; it also fails to catalyze the addition of acetylacetone to 1‐phenylethanol. On the basis of these observations, it is proposed and confirmed by independent experiments that the catalytic addition of β‐diketones to the secondary alcohols is in fact catalyzed by the Brønsted acid HClO4, which is generated by the reaction of cis‐[Ru(6,6′‐Cl2bipy)2(H2O)2](ClO4)2 with the β‐diketone.  相似文献   

8.
Summary Four new trinuclear copper(II) complexes bridged by o-phenylenebis(oxamato) (opba) and end-capped with 1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline (NO2-phen), 2,2-bipyridyl (bipy) or 4,4-dimethyl-2,2-bipyridyl (Me2bipy), {[Cu(opba)][Cu(L)]2}(ClO4)2 (L = phen, NO2-phen, bipy or Me2bipy), have been synthesized and characterized. Based on i.r., elemental analyses, conductivity measurements and electronic spectra, oxamato-bridged structures consisting of three copper(II) ions in which each copper(II) ion has a square-planar environment are proposed. The temperature-dependent magnetic susceptibility of {[Cu(opba)][Cu(phen)]2} (ClO4)2 has been studied in the 4.2–300 K range, giving the exchange integral J = -134.4cm–1. The result revealed the operation of an antiferromagnetic spin-exchange interaction between the adjacent copper ions.  相似文献   

9.
The 1:2 adduct lead(II) complexes with 1, 10‐phenanthroline (phen) containing three different anions, [Pb(phen)2(CH3COO)X] (X=NCS, NO3 and ClO4), have been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The structure of [Pb(phen)2(CH3COO)(ClO4)] was determined by single crystal X‐ray analysis. The Pb atom of the monomeric complex is coordinated by four nitrogen atoms of two 1, 10‐phenanthroline ligands and two oxygen atoms of the acetate ligand to form an irregular octahedron. The arrangement of the 1, 10‐phenanthroline and acetate ligands, exhibits a coordination gap around the PbII ion, possibly occupied by a stereochemical electron active lone pair on lead(II), which results in a hemidirected lead compound. The π‐π stacking interaction between the parallel aromatic rings may help to increase the coordination ‘gap’ around the PbII ion.  相似文献   

10.
Three new polyamine Ni(II) complexes, namely [Ni(trien)(phen)](BF4)2 1, [Ni(trien)(bipy)](ClO4)2 2 and [Ni(trien)(en)](ClO4)2 3 [trine = triethylenetetramine, phen = 1,10-phenanthroline, bipy = 2,2′-bipyridyl, en = ethylenediamine] have been synthesized and characterized by physico-chemical and spectroscopic methods. Complexes 1 and 2 crystallize in monoclinic space group P21/c, and possess a distorted octahedral geometry. Significant hydrogen bonding interactions are found in both complexes.  相似文献   

11.
《Comptes Rendus Chimie》2016,19(5):566-570
Commercially available activated MnO2 has been investigated as a catalyst for the oxidation of alcohols (phenylethanol, 4-methyl- and 4-methoxybenzyl alcohol, trans-cinnamyl alcohol, cyclohexanol, menthol, perillyl alcohol and myrtenol) by TBHP/decane or TBHP/water in MeCN. The activity is highest for benzylic and allylic alcohols. Secondary alcohols yield ketones with good selectivities, while the aldehydes generated from primary alcohols are further oxidized. The process competes with the TBHP catalyzed decomposition. It thus requires the use of excess TBHP and high catalyst loadings to achieve high conversions. However, the low cost of the reagents makes this new protocol convenient for the oxidation of reactive secondary alcohols. The study also suggests that MnO2 should be proscribed as a reagent to quench excess TBHP in oxidative processes when the synthetic target contains easily oxidizable alcohol functions and when carrying our detailed kinetic monitoring of oxidation processes.  相似文献   

12.
Complexes of Mn(II) with 1,10-phenanthroline (phen) and 2,2'-bipyridine (bipy) are investigated by means of electrospray ionization (ESI) mass spectrometry. Under the conditions used, [MnL(n)]2+ with n = 2 and 3, [MnL(n)Cl]+ with n = 0-2, and [Mn2L(n)Cl3]+ with n = 2 and 3 are produced (where L = phen or bipy). The collision-induced dissociation (CID) spectra of the mass-selected ions show various dissociation pathways, most notable among them is the reduction of the ligated Mn(II) to Mn(I) by intracomplex electron transfer. CID experiments of mixed-ligand complexes formed upon ESI from solutions which contain both phen and bipy exhibit preferential eliminations of bipy, indicating that bipy is a significantly weaker ligand for Mn(II) than phen. This effect is mainly attributed to the flexibility of the bipy ligand concomitant with thermodynamic control in ion dissociation. To support this hypothesis, mixed complexes with some methylated derivatives as well as those containing 4,5-diazafluorene (daf) are examined also. Interestingly, the differences between the ligands diminish in charge-separation reactions of dicationic Mn(II) complexes, due to the joined operation of thermodynamic as well as kinetic effects. In addition, the complexes [Mn(bipy)]+, [Mn(phen)]+, [Mn(bipy)]2+, [Mn(phen)]2+, and [Mn(bipy)(phen)]2+ are computed using the mPW1PW91 hybrid density functional along with the Stuttgart-Cologne-type pseudopotential and basis-set suite, and relative energies for charge-separation reactions and losses of neutral ligands are evaluated.  相似文献   

13.
Abstract

Mixed ligand copper(II) complexes of 2-(2-pyridylethyl)picolylamine (pepica) of [Cu(pepica)(pi-colinato)](ClO4)(H2O) and the [Cu(pepica)(L)](ClO4)2 type, where L stands for 2,2′-bipyridine (bipy), 1,10-phenanthroline, neocuproine, and ethylenediamine, and dipicolylamine(dipica) of the [Cu(dipica)(L)](ClO4)2(H2O) n type, where L for 2,2′-bipyridine (n = 0), 1,10-phenanthroline (phen, n = 0), and neocuproine (n = 1), have been synthesized and characterized by elemental analyses, and IR, electronic and EPR spectroscopic measurements. The molecular structures of [Cu(pepica)(bipy)](ClO4)2 (1) and [Cu(dipica)(phen)](ClO4)2 (2) have been determined using three dimensional X-ray diffraction data. Complex 1 consists of discrete distorted square pyramidal [Cu(pepica)(bipy)] cations, with a meridional pepica ligand and one of the pyridine rings of the bipy ligand forming a basal plane. The other pyridine nucleus of the bipy is bound at the apex having an elongated bond distance of 2.255 Å and tilted off the normal z axis by ~15°. Complex 2 comprises discrete distorted trigonal bipyramidal [Cu(dipica)(phen)] cations, with the two pyridine nuclei of the dipica ligand and one of the pyridine rings of the phen forming an equatorial trigonal plane and the remaining pyridine ring of the phen and the amine nitrogen of the dipica on the axial sites. The trigonal bipyramidal cation, distorted toward a square pyramidal structure, has an enlarged equatorial N(py)–Cu–N(py) angle of 132.4° and an elongated equatorial Cu–N(phen) bond of 2.156 Å. All of the complexes exhibit axial type EPR spectra. Gaussian resolved d-d spectra for these complexes, except the dipica-bipy and dipicaphen ones, yield an orbital sequence of dx 2- y 2dz 2 > dxy > dyz dxz . The bonding properties of the tridentate and the bidentate ligands are elucidated.  相似文献   

14.

Two novel manganese(II) complexes, [Mn(phen)2N3·H2O]ClO4·H2O and Mn(phen)2(N3)2 have been synthesized by the reaction of Mn(ClO4)2·6H2O and Mn(CH3CO2)2·4H2O with NaN3 and phen in EtOH/H2O solution, respectively (where phen = 1,10-phenanthroline). Their crystal structures have been determined by X-ray diffraction. Both complex molecules have distorted octahedral geometry and two 1,10-phenanthroline molecules chelate to a Mn(II) atom with a cis-configuration. To [Mn(phen)2N3·H2O]ClO4·H2O, one nitrogen atom from an azide anion and one oxygen atom from a water molecule cis-coordinate to the Mn(II) atom while two nitrogen atoms occupy cis positions in Mn(phen)2(N3)2. These complexes are versatile precursors for the design of heteropolymetallic systems.  相似文献   

15.
Summary Reactions of ruthenium carbonyl complexes of the type [RuX2(CO)(Ph2RAs)3] (X=Cl or Br; R=Me or Et) with 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen) in alcohol produce orange red cationic products of the formula [RuX(CO)(N-N)(Ph2RAs)2]ClO4 (N-N=bipy or phen). Likewise, the hydridocarbonyls of ruthenium and osmium of the type [MHX(CO)(Ph2RAs)3] (M=Ru or Os) react with bipy and phen to yield yellow cationic complexes of the composition [(MH(CO)(N-N)(Ph2RAs)2]ClO4. Structures have been assigned to all the complexes on the basis of i.r. and1 H n.m.r. spectral data.  相似文献   

16.
Two palladium(II) complexes, [Pd(bipy)(BzPhe‐N,O)] and [Pd(phen)(BzPhe‐N,O)]·4H2O were synthesized by reactions between Pd(bipy)Cl2 and BzPheH2 (N‐benzoyl‐β‐phenylalanine), Pd(phen) Cl2 and BzPheH2 in water at pH‐9, with their structures determined by X‐ray diffraction analysis. The Pd atom is coordinated by two nitrogen atoms of bipy (or phen), the deprotonated amido type nitrogen atom and one of the carboxylic oxygens of BzPhe (BzPhe = N‐benzoyl‐β‐phenylalaninate dianion). In the complex [Pd(phen) (BzFne‐N,O)] · 4H2O, the side chain of phenylalanine is located above and approximately parallels to the coordination plane. Both the aromatic‐aromatic stacking interaction between the phenyl ring of phenylalanine and phen, and the metal ion‐aromatic interaction between the phenyl ring of phenylalanine and Pd(II) were observed. [Pd(bipy)(BzPhe‐N,O)] has the phenylalanyl side chain oriented outwards from the coordination plane, which is mainly due to the interaction between the carbonyl oxygen atom of the amido group and the phenyl ring of phenylalanine. The reason for the different orientation of phenylalanyl side chain in the complexes was suggested.  相似文献   

17.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

18.
The ligand N-(2-propionic acid)-salicyloyl hydrazone(H3L, 1) and its new transition metal(II) complexes [NiHL(bipy)H2O] (2), [CdHL(bipy)(H2O)2]2·2H2O (3) and [NiHL(phen)H2O]·H2O (4) (HL is a dianion, bipy?=?2,2′-bipyridine and phen?=?1,10-phenanthroline) were synthesized and characterized on the basis of elemental analyses, IR, 1H NMR, molar conductivity and thermal analysis. Single crystal X-ray diffraction showed that 1 is in keto form and connected by hydrogen bonds to form a two-dimensional supermolecular compound. Complexes 2 and 4 have the same structure with distorted meridional octahedral geometry with 1 as a tridentate ligand with keto-form coordination by azomethine, carboxyl O and acyl O. In 3, ligand 1 bridges two Cd(II) atoms by μ 2-O of carboxyl. H-bonding is an important weak interaction for constructing supermolecular frameworks. There are π–π interactions between bipy or phen rings in 3 or 4, respectively.  相似文献   

19.
By using a dual‐ligand approach, two new homochiral zinc(II) coordination polymers, Zn2(phen)2(H2O)2(cam)2 · ethanol ( 1 ) and Zn(bipy)(cam) ( 2 ) [phen = 1,10‐phenanthroline, bipy = 2,2′‐bipyridine, H2cam = (1R,3S)‐(+)‐camphoric acid] have been synthesized under solvothermal conditions. Compound 1 has a zigzag chain‐like structure and compound 2 has a linear chain‐like structure. The two compounds exhibit intense photoluminescence upon photoexcitation at 280 and 290 nm, respectively.  相似文献   

20.
The complexes fac-O3ClOMn(CO)3(NN) (NN = 1,10-phenantroline (phen) or 2,2'bipyridine (bipy)) react with an excess of the ligands L [L = P(OR)3 or P(OR)2Ph, R = Me or Et] in refluxing ethanol to give cis-trans-[Mn(CO)2-(NN)L2]ClO4, or the more highly substituted [Mn(CO)(NN)L3]ClO4 if the reaction is carried out under UV irradiation. Carbonylation at normal pressure of the latter complexes results in the formation of cis-cis-[Mn(CO)2(NN)L2]ClO4, which undergo isomerization to the cis-trans isomer when heated in acetone.Treatment of fac-O3ClOMn(CO)3(dpe) (dpe = 1,2-bis(diphenylphosphino)-ethane] with bipy or phen in refluxing ethanol gives the corresponding cis-[Mn(CO)2(NN)(dpe)]ClO4 complexes, and irradiation of these with UV in the presence of an excess of P(OR)3 (R = Ph, Et or Me) gives the monocarbonyls [Mn(CO)(NN)(dpe)L]ClO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号