首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
利用分子动力学模拟方法,对比考察了平衡条件、外压作用、梯度电场作用下,摩尔比为1:1 的甲醇-水混合溶液在纳米碳管(CNT)中的静态结构以及输运行为. 研究发现:在平衡体系与外压作用下,纳米碳管内甲醇与水呈现出明显的不混溶现象,甲醇主要分布于管壁附近,水分子主要分布于纳米碳管轴心附近;而在梯度电场作用下,纳米碳管由疏水性向亲水性转变,更多的水分子分布于管壁,导致纳米碳管内甲醇-水的不混溶现象消失. 另一方面,在外压作用下,纳米碳管内甲醇与水呈现单向移动;而在梯度电场下,甲醇与水呈现快速的双向移动,其流通量较相应外压作用体系高出近一个数量级,但由于双向的流通量大小相近,导致净流通量与外压作用下的净流通量差异不大.  相似文献   

2.
受限于不同螺旋性的纳米碳管中水的分子动力学模拟   总被引:3,自引:0,他引:3  
王俊  朱宇  周健  陆小华 《化学学报》2003,61(12):1891-1896
近年来将纳米碱米碳管引入到与生命过程息息相关的离子通道膜的研究逐渐成 为热点,而其中的关键就是要了解受限于膜孔道(碳管)中水分子的行为。采用分 子动力学模拟在300 K和1.01 * 10~5 Pa下对受限于(6,6)armchair型和(10, 0)zigzag型纳米碳管中的水进行了研究,得到了水分子在碳管中的局部密度分布 等静态性质以及水分子在碳管中的传递等动态性质,并对不同势能模型的模拟结果 作了比较。结果表明选择不同的势能模型并没有改变此体系的固有性质,即水分子 不仅能够进入到憎水性的(6,6)碳管中而且能形成一条稳定的由氢键相连的纵列 (single file),而且在管中以纵列的形式进行同歇传递。此外,碳管螺旋性对 受限水的静态性质影响不大但对动态性质则有一定程度的影响,水分子在(10,0 )zigzag型碳管中的传递能力要强于在(6,6)armchair型碳管中的能力。  相似文献   

3.
以纳米碳管(CNT)仿生构筑正渗透(FO)膜, 采用分子动力学模拟的方法考察水和盐在由CNT(6,6)、CNT(7,7)、CNT(8,8)、CNT(9,9)、CNT(10,10)、CNT(11,11)等不同尺寸纳米碳管构筑膜中, 于2.5、3.75、5.0mol·L-1等不同汲取液浓度下的传递行为. 纳秒级的模拟得到水分子在不同尺寸纳米碳管膜内的分布, 水通量的变化以及盐截留等情况. 模拟结果表明, 由CNT(8,8)构筑的正渗透膜表现出优异的通水阻盐性能.  相似文献   

4.
用分子动力学模拟方法研究外电场(简称电场)作用下水化聚全氟磺酸钾膜中水分子的电渗迁移运动,并分析探讨膜的结构与水分子的电渗迁移特性的关系.结果表明,无外加电场时水分子和K+的速度都服从麦克斯韦分布;施加适当电场时,水分子和K+在垂直电场方向上的速度分量仍服从麦克斯韦分布,但平行电场方向上的速度分量则服从峰值漂移的麦克斯韦分布.并且,峰值漂移速度可作为水分子和K+的平均迁移速度的近似值,从而计算得到水分子的电渗系数.结果还显示,K+第一配位层内平均含有约4.04个水分子,它们的平均迁移速度只有K+的57%.这部分水分子贡献的电渗迁移系数为总电渗迁移系数(2.97)的77%.  相似文献   

5.
使用分子动力学研究了乙醇与水分子在纳米金管内按照不同比例混合时的吸附现象,并利用径向密度分布函数及水和乙醇分子所形成的平均氢键数来探讨纳米限制效应.结果表明,径向密度分布函数和氢键数目受纳米金管影响较大.另外,水与金管之间的作用力比乙醇与金管之间的大,导致水分子形成的平均氢键数不同于乙醇分子的.  相似文献   

6.
利用分子动力学模拟研究了五种不同种类的溶质分子(K+, Mg2+, Cl-, K-和K0)在直径为0.60-1.28 nm的纳米碳管内的水化结构. 模拟结果揭示了单电荷溶质、双电荷溶质和中性溶质在受限条件下具有不同的水化行为. 单价溶质的配位数只有在直径不大于0.73 nm的纳米碳管内才会明显减少. 和带有电荷的溶质不同, 中性溶质的配位数对纳米碳管直径的改变非常敏感, 并且随着管径的减小而迅速减少. 模拟结果还表明带单价正电荷的溶质(K+)第一配位层水分子的取向结构会随着纳米碳管直径的改变发生变化, 而其他溶质配位层取向结构在本文所涉及的纳米碳管内都几乎和体相中一致. 在直径大于1.0 nm的纳米碳管中, K+的配位层取向结构有序度随着管径的减小而单调下降, 但是在直径小于1.0 nm的纳米碳管中, 随着碳管管径的减小而迅速上升. 在两个最窄的纳米碳管内, 其结构有度甚至高于体相. 双电荷溶质的水化结构在本文所研究的碳管直径范围内和体相完全一致, 即使在直径只有0.6 nm的碳管内也无任何改变.  相似文献   

7.
杨振  杨晓宁  徐志军 《物理化学学报》2008,24(11):2047-2052
采用经典的分子动力学模拟方法系统地研究了在常温条件下金纳米颗粒周围水的结构与动力学性质. 结果表明, 水分子在纳米颗粒附近形成了明显的多层结构. 同时随着径向距离的减小, 水分子的空间取向也从无序排列趋向于有序排列. 通过分析界面处不同水层中的均方位移及停留时间分布, 发现紧贴颗粒表面的第一和第二水层中的水分子表现出很低的扩散系数, 而第三和第四水层中的水分子则能够轻易地离开界面区域而进入主体相区域. 此外, 在界面处的每个水分子的氢键平均数要高于在主体相的平均值.  相似文献   

8.
以玻璃为基板材料, 在550 ℃的低温条件下利用微波等离子体化学气相沉积法合成了定向纳米碳管.结果表明, 在利用微波等离子体化学气相沉积法合成纳米碳管时, 因等离子体作用存在于基板表面的自偏压对纳米碳管的定向生长起着非常重要的作用.自偏压的作用总是使纳米碳管的生长垂直于基板表面.  相似文献   

9.
为从微观上探究氟碳型表面活性剂在水中的分布情况,使用全原子分子动力学方法模拟了全氟辛酸钠(Na-PFO)在水中的分布情况。模拟平衡后,PFO-分布在水/气界面处,且疏水的氟碳链朝向气相,亲水的羧酸根浸在水中,形成层状分布,径向分布函数证明钠离子主要分布在水中的羧酸根附近。羧酸根可与周围的水分子形成氢键,且显负电性的氟原子也可与水分子形成氢键,钠离子与水分子之间具有吸引作用,但不形成氢键;钠离子主要分布于PFO-的氧原子附近。  相似文献   

10.
杨鹏里  王振兴  梁尊  梁洪涛  杨洋 《化学学报》2019,77(10):1045-1053
水表面电势在诸多电化学过程与反应中扮演关键角色, 然而实验上直接测量却极具挑战. 本论文提出一套基于平衡态恒定电势分子动力学的模拟-分析-计算方法, 可实现通过保持恒定电势且伴随电荷涨落的电极板将电场作用于附近的水表面, 并以平均探针电势计算方法精确测量空间电势分布. 凭借此套方法, 首次计算了不同电极电势下水表面区域的空间电势分布函数, 并测得了鲜有报道的水表面电势随外电场的变化关系. 发现了阴极附近水的表面电势随外电场增强而降低而阳极附近水的表面电势随外电场增强而增大的非对称性. 同时计算了平衡态水表面分子数密度和偶极矩极化密度分布函数, 展示出逐渐增强的外电场能够强烈改变水表面区域的极化行为也能够使液体水整体微弱的极化. 论文最后提出水表面电势随电场变化的非对称性源自水表面极化行为的非对称性以及液体区域的整体极化.  相似文献   

11.
We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (η). As the CNT length increases, the efficiency η will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f ~ exp?(- L/L(0)), and the average translocation time of individual water molecules yields to a power law of τ(trans) ~ L(υ), where L(0) and ν are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f ~ L(-μ) modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses.  相似文献   

12.
The permeation of a condensable gas mixture in a pressure gradient is examined within a dynamic density functional theory (DDFT). The non-equilibrium density and flux profiles of gas molecules trapped within a nanopore are calculated for each species as a function of feed gas density. Because of important fluid–fluid interaction close to condensation the flux and density gradients are not related by constant transport diffusivities with the thermodynamic correction of uniform density. For long narrow pores the relation of the selectivity to the equilibrium adsorption isotherms is validated. Improved separation is achieved by combining preferential wall interaction and advantageous attraction between gas molecules of different species and examples are discussed. Results from experiments and simulations of permeation in binary mixtures near condensation are still rare and the theory provides a simple basis to study qualitative trends using known parameters.  相似文献   

13.
Wang S  Hu X  Lee LJ 《Lab on a chip》2008,8(4):573-581
The asymmetric geometry of polymeric nanonozzles provides two different transport directions: a converging direction (from the large opening to the small opening) and a diverging direction (from the small opening to the large opening). Asymmetric transport was observed in such nanochannels for both rigid polystyrene nanoparticles and flexible DNA molecules under a DC electric bias. Small, hard nanoparticles migrate easily in the diverging direction and tend to pack inside the nanochannel in the converging direction. In contrast, large, flexible DNA molecules transport better in the converging direction than in the diverging direction. A high electric field and a high velocity gradient along the tapered region produce different geometric constrictions and vortex-like particle motions for rigid nanoparticles, and also generate various coil-stretching dynamics for DNA molecules. Such nanonozzle arrays are useful in high flux and high sieving efficiency devices for biomolecule delivery or separation, and for loading trace amounts of drugs or genes for controlled drug and gene delivery.  相似文献   

14.
We report molecular dynamics simulations of a generic hydrophobic nanopore connecting two reservoirs which are initially at different Na(+) concentrations, as in a biological cell. The nanopore is impermeable to water under equilibrium conditions, but the strong electric field caused by the ionic concentration gradient drives water molecules in. The density and structure of water in the pore are highly field dependent. In a typical simulation run, we observe a succession of cation passages through the pore, characterized by approximately bulk mobility. These ion passages reduce the electric field, until the pore empties of water and closes to further ion transport, thus providing a possible mechanism for biological ion channel gating.  相似文献   

15.
Transport of salt through the wall of porous microtube is relevant in various physiological microcirculation systems. Transport phenomena based modeling of such system is undertaken in the present study considering a combined driving force consisting of pressure gradient and external electric field. Transport of salt is modeled in two domains, in the flow conduit and in the pores of porous wall of the microtube. The solute transport in the microtube is presented by convective‐diffusive mass balance and it is solved using integral method under the framework of boundary layer analysis. The wall of the microtube is considered to be consisting of series of straight parallel cylindrical pores with charged inner surface. The solute transport through the pores is considered to be composed of diffusive, convective and electric potential gradient governed by Nernst‐Planck equation. Transport in the microtube and pores is coupled through the osmotic pressure model for the solvent and Donnan equilibrium distribution for the solute. The simulated results agree remarkably well with the experimental data conducted by in‐house experimental set up. The charge density of the porous wall is estimated through the minimization of errors involved between the experimental and simulated data for different operating conditions.  相似文献   

16.
The electroosmotic drag coefficient of water molecules in hydrated sodium perfluorosulfonate electrolyte polymer is evaluated on the basis of the velocity distribution functions of the sodium cations and water molecules with an electric field applied using molecular dynamics simulations. The simulation results indicate that both velocity distribution functions of water molecules and of sodium cations agree well with the classic Maxwellian velocity distribution functions when there is no electric field applied. If an electric field is applied, the distribution functions of velocity component in directions perpendicular to the applied electric field still agree with the Maxwellian velocity distribution functions but with different temperature parameters. In the direction of the applied electric field, the electric drag causes the velocity distribution function to deviate from the Maxwellian velocity distribution function; however, to obey the peak shifted Maxwellian distribution function. The peak shifting velocities coincide with the average transport velocities induced by the electric field, and could be applied to the evaluation of the electroosmotic drag coefficient of water. By evaluation of the transport velocities of water molecules in the first coordination shells of sodium cations, sulfonate anion groups, and in the bulk, it is clearly shown that the water molecules in the first coordination shell of sodium cations are the major contribution to the electroosmotic drag and momentum transfer from water molecules within the first coordination shell to the other water molecules also contributes to the electroosmotic drag. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

17.
受传统膜科学中分离膜的荷电化可提升膜盐水分离效能的启发,在前期工作基础上尝试以荷电化碳纳米管CNT(8,8)为水通道仿生构筑正渗透膜,利用分子动力学模拟的方法研究水分子在膜中的传递行为.模拟中,以0.5mo·lL-1氯化钠溶液模拟海水,1mo·lL-1的氯化镁溶液为汲取液,考察不同电量电荷修饰对碳纳米管正渗透膜中水分子密度分布、扩散系数以及水通量的影响.结果显示,电荷修饰对碳纳米管中水分子的密度分布和扩散速率以及水通量影响较显著,当碳纳米管管口荷电量为-0.3e时,碳纳米管膜可获得最大水通量.  相似文献   

18.
Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.  相似文献   

19.
Introducing an electric field into chromatography on hydroxyapatite (HAP) was attempted in order to enhance mass transfer and separation performance. A membrane spaced multicompartment electrolyzer was developed for electrochromatography on HAP. The high performance of liquid transport by electroosmotic flux was identified and described in terms of dynamic electroosmotic pressure. The application of the electric field resulted in an improved adsorption of bovine serum albumin as shown by the breakthrough curve as function of the electric field. An improved elution was also obtained in the presence of the electric field. The results show that electroosmosis is a powerful tool of liquid transport and dispersion in a packed bed of fine particles and has potential in the large-scale chromatography of biological molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号