首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
抗菌肽作为一种高效、广谱、不致细菌耐药性的抗菌物质受到科研人员的广泛关注。 在生物材料表面制备抗菌肽基涂层是减少器械相关细菌感染的有效途径。 然而传统抗菌肽释放型涂层受限于抗菌肽存储量,抗菌时效短;抗菌肽直接固定涂层易遭受死细菌对杀菌性能的掩蔽。 另外,生物材料使用场景的多变性和复杂性,强烈要求材料的正常服役和抗感染性能具有高度可调控性。 将刺激响应聚合物与现有的抗菌策略相结合,并通过精巧的设计来构建智能型抗肽涂层平台,对于获取优异的抗菌特性和丰富体系的使用场景具有重要意义。 本文综述了智能型抗菌肽涂层的研究进展,阐述了构建释放型和非释放型涂层的主要策略,分析了刺激响应聚合物在抗菌体系中的作用及角色,探讨了智能抗菌肽涂层在正常服役和感染应对阶段的功能转换设计,并对智能型抗菌肽涂层的未来发展做出展望。  相似文献   

2.
Layer-by-Layer (LbL) coatings are promising tools for the biofunctionalization of biomaterials, as they allow stress-free immobilization of proteins. Here, we explore the possibility to immobilize phosvitin, a highly phosphorylated protein viewed as a model of bone phosphoproteins and, as such, a potential promotive agent of surface-directed biomineralization, into biomimetic LbL architectures. Two immobilization protocols are attempted, first, using phosvitin as the polyanionic component of phosvitin/poly-(L-lysine) films and, second, adsorbing it onto preformed chondroitin sulfate/poly-(L-lysine) films. Surprisingly, it is neither possible to embed phosvitin as the constitutive polyanion of the LbL architectures nor to adsorb it atop preformed films. Instead, phosvitin triggers instant massive film disassembly. This unexpected, incidentally detected behavior constitutes the first example of destructive interactions between LbL films and a third polyelectrolyte, a fortiori a protein, which might open a route toward new stimuli-responsive films for biosensing or drug delivery applications. Interestingly, additional preliminary results still indicate a promotive effect of phosvitin-containing remnant films on calcium phosphate deposition.  相似文献   

3.
A series of novel stimuli-responsive AB, ABA, and BAB type block copolymers based on 6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose (MAIpGP:A block) and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA: B block) were synthesized via ATRP techniques using ethyl 2-bromoisobutyrate (EBiB) as monofunctional ATRP initiator in the case of diblock copolymer and diethyl meso-2,5-dibromoadipate (DEDBA) as bifunctional ATRP initiator in the case of triblock copolymers. The PMAIpGP blocks of the AB, ABA, and BAB type linear block copolymers were converted to water soluble PMAGP blocks via deprotection process under mild acidic conditions. Both proton NMR and DLS studies demonstrated that block copolymers were temperature-sensitive, whereby the lower critical solution temperature (LCST) of polymers varied with the polymerization degrees of comonomers in the block copolymers. LCST was determined to be between ∼35 °C and 55 °C depending on the type and the comonomer compositions of the block copolymers. It was observed that an increase on the percentage of hydrophilic PMAGP block in block copolymer caused an increase on the LCST value as expected.  相似文献   

4.
A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N- isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties.  相似文献   

5.
Supramolecular polymers allow for a modular approach to bioactive biomaterials. Here the effect of processing on the bioactivation of supramolecular biomaterials using a RNase S assay is investigated. Incorporation of S-peptides into supramolecular polymers by solvent casting shows a clear organic-solvent dependency. Although a significant release of the S-peptides is observed, RNase S activity can be measured indicating successful S-peptide surface immobilization. Additionally, the effect of electrospinning on the biomaterial's bioactivity is studied, showing that the fibrous meshes developed were bioactive. The results show the importance of solvent choice, and illustrate the potency of rendering supramolecular biomaterial films and meshes bioactive via a modular approach.  相似文献   

6.
This perspective covers the most recent literature on the graft-modification of the natural polymers celluloses, chitosan and alginate through reversible deactivation radical polymerization (NMP, ATRP and RAFT). The different routes to obtain well-defined polysaccharide-based hybrids including “grafting from” and “grafting to” approaches, and their applications as composite, stimuli-responsive, and biomaterials are discussed.  相似文献   

7.
Polypropylene (PP) films were modified by the consecutive grafting of N,N′-dimethylacrylamide (DMAAm) and N-isopropylacrylamide (NIPAAm) (two-step method) using preirradiation method with gamma-rays. The effect of absorbed dose, monomer concentration and reaction time on the degree of grafting was determined. The grafted samples were verified by the FTIR-ATR spectroscopy; thermal properties were analyzed by differential scanning calorimetry (DSC) and the stimuli-responsive behavior was studied by swelling and contact angle in water as well as DSC. Thermoresponsive films of (PP-g-DMAAm)-g-NIPAAm presented a lower critical solution temperature (LCST) at 36.5 °C.  相似文献   

8.
The layer‐by‐layer (LbL) deposition technique is widely used to develop multilayered films based on the directed assembly of complementary materials. In the last decade, thin multilayers prepared by LbL deposition have been applied in biological fields, namely, for cellular encapsulation, due to their versatile processing and tunable properties. Their use was suggested as an alternative approach to overcome the drawbacks of bulk hydrogels, for endocrine cells transplantation or tissue engineering approaches, as effective cytoprotective agents, or as a way to control cell division. Nanostructured multilayered materials are currently used in the nanomodification of the surfaces of single cells and cell aggregates, and are also suitable as coatings for cell‐laden hydrogels or other biomaterials, which may later be transformed to highly permeable hollow capsules. In this Focus Review, we discuss the applications of LbL cell encapsulation in distinct fields, including cell therapy, regenerative medicine, and biotechnological applications. Insights regarding practical aspects required to employ LbL for cell encapsulation are also provided.  相似文献   

9.
Interactive materials that can respond to a trigger by changing their morphology, but that can also gradually degrade into a fully soluble state, are attractive building blocks for the next generation of biomaterials. Herein, we design such transiently responsive polymers that exhibit UCST behaviour while gradually losing this property in response to a hydrolysis reaction in the polymer side chains. The polymers operate within a physiologically relevant window in terms of temperature, pH, and ionic strength. Whereas such behaviour has been reported earlier for LCST systems, it is at present unexplored for UCST polymers. Furthermore, we demonstrate that, in contrast to LCST polymers, in aqueous medium the UCST polymer forms a coacervate phase below the UCST, which can entrap a hydrophilic model protein, as well as a hydrophobic dye. Because of their non‐toxicity, we also provide in vivo proof of concept of the use of this coacervate as a protein depot, in view of sustained‐release applications.  相似文献   

10.
Micropatterns of different biomaterials with micro- and nanoscale features and defined spatial arrangement on a single substrate are useful tools for studying cellular-level interactions, and recent reports have highlighted the strong influence of scaffold compliance in determining cell behavior. In this paper, a simple yet versatile and precise patterning technique for the fabrication of interdigitated micropatterns of nanocomposite multilayer coatings on a single substrate is demonstrated through a combination of lithography and layer-by-layer (LbL) assembly processes, termed polymer surface micromachining (PSM). The first nanofilm pattern is constructed using lithography, followed by LbL multilayer assembly and lift-off, and the process is repeated with optical alignment to obtain interdigitated patterns on the same substrate. Thus, the method is analogous to surface micromachining, except that the deposition materials are polymers and biological materials that are used to produce multilayer nanocomposite structures. A key feature of the multilayers is the capability to tune properties such as stiffness by appropriate selection of materials, deposition conditions, and postdeposition treatments. Two- and four-component systems on glass coverslips are presented to demonstrate the versatility of the approach to construct precisely defined, homogeneous nanofilm patterns. In addition, an example of a complex system used as a testbed for in vitro cell adhesion and growth is provided: micropatterns of poly(sodium 4-styrenesulfonate)/poly-L-lysine hydrobromide (PSS/PLL) and secreted phospholipase A(2)/poly(ethyleneimine) (sPLA(2)/PEI) multilayers. The interdigitated square nanofilm array patterns were obtained on a single coverslip with poly(diallyldimethylammonium chloride) (PDDA) as a cell-repellent background. Cell culture experiments show that cortical neurons respond and bind specifically to the sPLA(2) micropatterns in competition with PLL micropatterns. The fabrication and the initial biological results on the nanofilm micropatterns support the usefulness of this technique for use in studies aimed at elucidating important biological structure-function relationships, but the applicability of the fabrication method is much broader and may impact electronics, photonics, and chemical microsystems.  相似文献   

11.
Recent work regarding the Layer by Layer (LbL) engineering of poly(lactide-co-glycolide) nanoparticles (PLGA NPs) is reviewed here.The LbL engineering of PLGA NPs is applied as a means of generating advanced drug delivery devices with tailored recognition,protection,cargo and release properties.LbL in combination with covalent chemistry is used to attach PEG and folic acid to control cell uptake and direct it towards cancer cells.LbL coatings composed of chitosan and alginate show low protein interactions and can be used as an alternative to Pegylation.The assembly on top of LbL coatings of lipid layers composed of variable percentages of 1,2-dioleoyl-sn-glycero-3-choline (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoL-serine (DOPS) increases NP uptake and directs the NPs towards the endoplasmic reticulum.The antibody anti-TNF-α is encapsulated forming a complex with alginate that is assembled LbL on top of PLGA NPs.The antibody is released in cell culture following first order kinetics.The release kinetics of encapsulated molecules inside PLGA NPs are studied when the PLGA NPs are coated via LbL with different polyelectrolytes.The intracellular release of encapsulated Doxorubicin is studied in the HepG2 cell line by means of Fluorescence Lifetime Imaging.  相似文献   

12.
Stimuli-responsive polymers are capable of translating changes in their local environment to changes in their chemical and/or physical properties. This ability allows stimuli-responsive polymers to be used for a wide range of applications. In this review, we highlight the analytical applications of stimuli-responsive polymers that have been published over the past few years with a focus on their applications in sensing/biosensing and separations. From this review, we hope to make clear that while the history of using stimuli-responsive polymers for analytical applications is rich, there are still a number of directions to explore and exciting advancements to be made in this flourishing field of research.  相似文献   

13.
In this work, a novel single-stage process for in situ synthesis of Ag nanoparticles (NPs) using the layer-by-layer (LbL) technique is presented. The Ag NPs were formed into nanotextured coatings based on sequentially adsorbed poly(allylamine hydrochloride) (PAH) and SiO2 NPs. Such highly porous surfaces have been used in the fabrication of highly efficient ion release films for applications such as antibacterial coatings. In this approach, the amino groups of the PAH acted as reducing agent and made possible the in situ formation of the Ag NPs. This reduction reaction occurred during the LbL process as the coating was assembled, without any further step after the fabrication and stabilization of the multilayer film. Biamminesilver nitrate was used as the Ag+ ion source during the LbL process and it was successfully reduced to Ag NPs. All coatings were tested with gram-positive and gram-negative bacterial cultures of Escherichia coli, Staphylococcus aureus, and Lactobacillus delbrueckii showing an excellent antimicrobial behavior against these types of bacteria (more than 99.9% of killing efficiency in all cases).  相似文献   

14.
层层自组装技术在生物医用材料领域中的应用研究进展   总被引:9,自引:0,他引:9  
基于聚电解质阴阳离子交替组装的层层自组装技术由于可在温和的条件下实现多种生物大分子在材料表面的固定,并通过对组装条件的控制实现多种生物功能,已成为生物医用材料表面设计的重要手段。本文对层层自组装技术在构建血液相容性界面、组织工程表面、药物控释涂层等生物医用材料领域的应用研究进行了比较系统的阐述。  相似文献   

15.
Multilayers incorporated with stimuli-responsive substances by means of layer-by-layer (LbL) self-assembly are much attractive due to their advantages of stimuli-responsiveness and potential applications in different fields. In this study, pyrenemethyl acrylate (PA) was synthesized, and was copolymerized with acrylic acid (AA) to obtain the amphiphilic and photodegradable P(PA-co-AA) polymers with a PA:AA molar ratio of 1.3:3, and an average molecular weight of 6.9 kDa and polydispersity index of 1.04. They formed micelles spontaneously when dispersed in aqueous solution with a size of 27.5 nm in a dry state and 136.6 nm in a wet state. The micelles were readily decomposed to form aggregates as a result of the cleavage of the pyrenemethyl ester bonds under UV-irradiation. UV-responsive micelles-containing multilayers were prepared by LbL self-assembly of the UV-responsive micelles and polyallylamine hydrochloride (PAH). UV-irradiation of the multilayers resulted in the decomposition of micelles, leading to larger surface roughness, and enhanced swelling ratio and wettability of the multilayers. In vitro culture of A549, HepG2 and endothelial cells showed significantly better adhesion at 4 h on the UV-illuminated multilayers, whereas the cell proliferation was not affected significantly until 5 d.  相似文献   

16.
UV-protective coatings on live bacterial cells were created from the assembly of cationic and UV-absorbing anionic polyelectrolytes using layer-by-layer (LbL) methodology. A cationic polymer (polyallylamine) and three different anionic polymers with varying absorbance in the UV range (poly(vinyl sulfate), poly(4-styrenesulfonic acid), and humic acid) were used to encapsulate Escherichia coli cells with two different green fluorescent protein (GFP) expression systems: constitutive expression of a UV-excitable GFP (GFPuv) and regulated expression of the intensely fluorescent GFP from amphioxus (GFPa1) through a theophylline-inducible riboswitch. Riboswitches activate protein expression after specific ligand-RNA binding events. Hence, they operate as a cellular biosensor that will activate reporter protein synthesis after exposure to a ligand target. E. coli cells coated with UV-absorbing polymers demonstrated enhanced protection of GFP stability, metabolic activity, and viability after prolonged exposure to radiation from a germicidal lamp. The results show the effectiveness of LbL coatings to provide UV protection to living cells for biotechnological applications.  相似文献   

17.
Recently, there are significant interests in the development of biomaterials with nonlinear response to an external stimulus. Thermoresponsive polymers as a well-known class of stimuli-responsive materials represent reversible hydrophilicity/hydrophobicity characteristics around a critical temperature. This switchable behavior applies for nondestructive cellular detachment from cultivation substrates. In this study, poly (N-isopropylacrylamide) (PNIPAAm)-grafted dishes were made up to harvest retinal pigmented epithelial (RPE) and periodontal ligament cell (PDLC) sheets. Wettability assessments verified that all functionalized surfaces were inverted from hydrophilic to hydrophobic state when the temperature rises from lower critical solution temperature (LCST) at 37 °C. Other physicochemical characteristics such as chemical composition, grafting thickness, and surface topography were investigated through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). ATR-FTIR results showed typical peaks of amide group corresponding to successful PNIPAAm polymerization. AFM microscopy results also proved creating a rough PNIPAAm layer with thickness of 29.2 nm after grafting process in the mixture of methanol and water. Cell culture experiments showed an irreversible cellular attachment/detachment from modified surfaces upon temperature changes. These results introduced thermoresponsive TCPS to noninvasively harvest RPE and PDLCs sheets especially for application in scaffold-free tissue engineering decorations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1567–1576  相似文献   

18.
Smart polymers are a special class of polymers, which respond to the various external stimuli by changing their properties. Recent developments in synthetic polymer chemistry have provided the possibility of designing and synthesis of various new stimuli-responsive polymers. These stimuli-responsive polymers can be used to prepare smart drug delivery systems (DDS) by grafting them on various nanomaterials. The main aim of this review is to present collective information on various stimuli-responsive polymers grafted on silica nanoparticles for the preparation of smart DDS. The stimuli covered are pH, temperature, redox, reactive oxygen species (ROS), glucose concentration, enzymes, magnetic field, and so forth. The structures of various stimuli-responsive polymers are shown with their relevance to the preparation of smart DDS. The crucial roles of macromolecular design and synthesis of smart polymers in the development of stimuli-responsive DDS are discussed with examples from literature and the challenges that still exist in this area of research are presented.  相似文献   

19.
Plasma polymer coatings fabricated from Melaleuca alternifolia essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g., a dental implant, these coatings may inadvertently become subject to in situ cleaning treatments, such as those using an atmospheric pressure plasma jet, a promising tool for the effective in situ removal of biofilms from tissues and implant surfaces. Here, we investigated the effect of such an exposure on the antimicrobial performance of the Melaleuca alternifolia polymer coating. It was found that direct exposure of the polymer coating surface to the jet for periods less than 60 s was sufficient to induce changes in its surface chemistry and topography, affecting its ability to retard subsequent microbial attachment. The exact effect of the jet exposure depended on the chemistry of the polymer coating, the length of plasma treatment, cell type, and incubation conditions. The change in the antimicrobial activity for polymer coatings fabricated at powers of 20–30 W was not statistically significant due to their limited baseline bioactivity. Interestingly, the bioactivity of polymer coatings fabricated at 10 and 15 W against Staphylococcus aureus cells was temporarily improved after the treatment, which could be attributed to the generation of loosely attached bioactive fragments on the treated surface, resulting in an increase in the dose of the bioactive agents being eluted by the surface. Attachment and proliferation of Pseudomonas aeruginosa cells and mixed cultures were less affected by changes in the bioactivity profile of the surface. The sensitivity of the cells to the change imparted by the jet treatment was also found to be dependent on their origin culture, with mature biofilm-derived P. aeruginosa bacterial cells showing a greater ability to colonize the surface when compared to its planktonic broth-grown counterpart. The presence of plasma-generated reactive oxygen and nitrogen species in the culture media was also found to enhance the bioactivity of polymer coatings fabricated at power levels of 10 and 15 W, due to a synergistic effect arising from simultaneous exposure of cells to reactive oxygen and nitrogen species (RONS) and eluted bioactive fragments. These results suggest that it is important to consider the possible implications of inadvertent changes in the properties and performance of plasma polymer coatings as a result of exposure to in situ decontamination, to both prevent suboptimal performance and to exploit possible synergies that may arise for some polymer coating-surface treatment combinations.  相似文献   

20.
In this study, a new temperature sensitive polymer was obtained by the solution polymerization of ethoxypropylacrylamide. The monomer, N-(3-ethoxypropyl)-acrylamide was synthesized by the nucleophilic substitution reaction of 3-ethoxy-propylamine and acryloyl chloride. The solution polymerization was performed in ethanol at 70 °C, by using azobisizobutyronitrile as the initiator. Poly(N-(3-ethoxypropyl)acrylamide), PEPA, exhibited a reversible phase transition by the temperature. The effects of polymer and salt concentrations on the lower critical solution temperature, (LCST) behaviour were investigated. LCST was found to be strongly dependent on the polymer concentration. The dynamic light scattering (DLS) measurements confirmed the formation of aggregates by the association of nucleated polymer chains at the temperatures higher than LCST. However an unusual behaviour, a marked decrease in the hydrodynamic diameter by the increasing PEPA concentration was observed below the LCST. The effect of salt concentration on the critical flocculation temperature of PEPA was reasonably similar to poly(isopropylacrylamide), PNIPA. In the ethanol-water media, the reversible phase transition behaviour was observed up the ethanol concentration of 30% v/v. This study indicated that PEPA was a new alternative thermally reversible material for PNIPA. With respect to the well-defined temperature-sensitive polymers like PNIPA, polymer concentration dependent LCST of PEPA can provide significant advantages in the applications like drug targeting, affinity separation and immobilization of bioactive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号