首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[(n‐Bu)2Sn(O2PPh2)2] ( 1 ), and [Ph2Sn(O2PPh2)2] ( 2 ) have been synthesized by the reactions of R2SnCl2 (R=n‐Bu, Ph) with HO2PPh2 in Methanol. From the reaction of Ph2SnCl2 with diphenylphosphinic acid a third product [PhClSn(O2PPh2)OMe]2 ( 3 ) could be isolated. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/c with a = 1303.7(1) pm, b = 2286.9(2) pm, c = 1063.1(1) pm, β = 94.383(6)°, and Z = 4. 2 crystallizes triclinic in the space group , the cell parameters being a = 1293.2(2) pm, b = 1478.5(4) pm, c = 1507.2(3) pm, α = 98.86(3)°, β = 109.63(2)°, γ = 114.88(2)°, and Z = 2. Both compounds form arrays of eight‐membered rings (SnOPO)2 linked at the tin atoms to form chains of infinite length. The dimer 3 consists of a like ring, in which the tin atoms are bridged by methoxo groups. It crystallizes triclinic in space group with a = 946.4(1) pm, b = 963.7(1) pm, c = 1174.2(1) pm, α = 82.495(6)°, β = 66.451(6)°, γ = 74.922(6)°, and Z = 1 for the dimer. The Raman spectra of 2 and 3 are given and discussed.  相似文献   

2.
Germanium(II)‐, Tin(II)‐ and Lead(II)‐Derivatives of the polycyclic Alumosiloxane [Ph2SiO]8[Al(O)OH]4 Five new derivatives of the polycyclic alumosiloxane [Ph2SiO]8[Al(O)OH]4 have been synthesized by replacement of the protic hydrogen atoms on the hydroxy‐groups attached to the aluminium atoms by the divalent group 14 elements germanium, tin and lead. The compounds can be divided in those with one metal atom per alumosiloxane moiety, [Ph2SiO]8[Al(O)OH]2[AlO2]M (M=Ge, Sn), and those with complete substitution of the protic hydrogen atoms by metal atoms like [Ph2SiO]8[AlO2]4M2 (M= Sn, Pb). Always one element of the series Ge, Sn, Pb is missing in the two types of compounds. Crystal structure analyses of [Ph2SiO]8[Al(O)OH]2[AlO2]2M · 2 C4H8O2 (M= Ge ( 1 ), Sn ( 2a )), [Ph2SiO]8[Al(O)OH]2[AlO2]2Sn · 2 THF ( 2b ) and [Ph2SiO]8[AlO2]4M2 (M= Sn ( 3 ), Pb ( 4 )) have been performed elucidating either polycyclic basket‐type ( 1 , 2a , 2b ) or closed polyhedral structures ( 3 , 4 ).  相似文献   

3.
[Ph3Sn(O2AsMe2)] ( 1 ) and [PhClSn(O2AsMe2)(μ‐OMe)]2 ( 3 ) have been synthesized by treatment of Ph3SnCl and Ph2SnCl2 with Na(O2AsMe2) in methanol, respectively. [Bu2ClSn(O2AsMe2)] ( 2 ) has been prepared by the reaction of Bu2SnCl2 with HO2AsMe2 in methanol. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/n with a = 699.8(1), b = 1961.4(2), c = 1433.6(2) pm, β = 95.17(1)°, and Z = 4. 2 also crystallizes monoclinic in the space group P21/m, the cell parameters being a = 480.6(1), b = 1992.7(2), c = 808.8(1) pm, β = 103.726(5)°, and Z = 2. Both compounds form infinite chains with alternating (Me2AsO2)? and (R3Sn)+ or (R2ClSn)+ units. The dimer 3 consists of 8‐membered (OSnOAs)2 rings in which the tin atoms are bridged by methanolate bridges. It crystallizes triclinic in the space group with a = 822.8(2), b = 910.4(2), c = 929.2(2) pm, α = 77.04(3)°, β = 82.35(3)°, γ = 68.69(3)°, and Z = 1 for the dimer. The vibrational and mass spectra of 1 , 2 and 3 are given and discussed.  相似文献   

4.
The coordination polymer [(Ph3SnF)2(Ph3SnO2PPh2)] ( 3 ), prepared by the reaction of [Ph3SnOPPh2OSnPh3](O3SCF3) ( 4 ) with Bu4N[Ph3SnF2] ( 5 ), was investigated by multinuclear magic angle spinning magnetic resonance spectroscopy and the results compared with those of the polymeric parent compounds Ph3SnF ( 1 ) and Ph3SnO2PPh2 ( 2 ). The crystal structure of 4 was determined by X‐ray crystallography. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Novel Silver‐Telluride Clusters Stabilised with Bidentate Phosphine Ligands: Synthesis and Structure of {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)}, [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl], and [Ag38Te13(Te t Bu)12(Ph2P(CH2)2PPh2)3] Bidentate phosphine ligands have been found effective to stabilise polynuclear cores containing silver and chalcogenide ligands. They can act as intra and intermolecular bridges between the silver centres. The clusters {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)} ( 1 ), [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl] ( 2 ), and [Ag38Te13(TetBu)12(Ph2P(CH2)2PPh2)3] ( 3 ) have been prepared and their molecular structure determined. Compound 2 and 3 are molecular structures with separated cluster cores while 1 forms a polymeric chain bridged by phosphine ligands. ( 1 : space group P21/c (No. 14), Z = 4, a = 3518,1(7) pm, b = 2260,6(5) pm, c = 3522,1(7) pm, β = 119,19(3)°; 2 : space group R3 (No. 148), Z = 6, a = b = 3059,4(4) pm, c = 5278,8(9) pm; 3: space group Pccn (No. 56), Z = 4, a = 3613,0(9) pm, b = 3608,6(7) pm, c = 2153,5(8) pm)  相似文献   

6.
(Me2NH2)[(Ph3Sn)3(MoO4)2], a Triorganotin Molybdate with Layer Structure The reaction of [(Ph3Sn)2MoO4] with (Me2NH2)Cl in an acetonitrile/water mixture leads to the formation of (Me2NH2)[(Ph3Sn)3(MoO4)2] ( 1 ). ( 1 ) crystallizes in the space group Pca21 with a = 1967.0(4), b = 1353.1(2) and c = 2176.6(5) pm. In the crystal structure of 1 Ph3SnO2 bipyramides and MoO4 tetrahedra are linked by corner sharing to give a layer structure. Additionally the layers are connected by O···H···N hydrogen bridges between MoO4 groups and [Me2NH2]+ ions to give a 3D network structure.  相似文献   

7.
Summary [(Ph3P)AuCo(CO)3(PPh3)] has been synthesised from [(Ph3P)AuCo(CO)4], PPh3v and Me3NO in acetonitrile. Its molecular structure, determined by single-crystal x-ray crystallography, consists of an almost linear P-Au-Co-P arrangement in which the Co atom is in a slightly distorted trigonalbipyramidal geometry, with the Au and P atoms occupying the apical sites. The Au-Co bond length of 2.450(1) ? is shorter than that reported for [(Ph3P)AuCo(CO)4]. The carbonyl ligands are bent towards the Au atom and the mean Au-Co-C angle is 81(1)°.  相似文献   

8.
Deprotonation of the aminophosphanes Ph2PN(H)R 1a – 1h [R = tBu ( 1a ), 1‐adamantyl ( 1b ), iPr ( 1c ), CPh3 ( 1d ), Ph ( 1e ), 2,4,6‐Me3C6H2 (Mes) ( 1f ), 2,4,6‐tBu3C6H2 (Mes*) ( 1g ), 2,6‐iPr2C6H3 (DIPP) ( 1h )], followed by reactions of the phosphanylamide salts Li[Ph2PNR] 2a , 2b , 2g , and 2h with the P‐chlorophosphaalkene (Me3Si)2C=PCl, and of 2a – 2g with (iPrMe2Si)2C=PCl, gave the isolable P‐phosphanylamino phosphaalkenes (Me3Si)2C=PN(R)PPh2 3a , 3b , 3g , and (iPrMe2Si)2C=PN(R)PPh2 4a – 4g . 31P NMR spectra, supported by X‐ray structure determinations, reveal that in compounds 2a , 2b , 3a , and 3b , with bulky N‐alkyl groups the Si2C=P–N–P skeleton is non‐planar (orthogonal conformation), whereas 3g , 3h , and 4g with bulky N‐aryl groups exhibit planar conformations of the Si2C=P–N–P skeleton. Solid 3g and 4g exhibit cisoid orientation of the planar C=P–N–C units (planar I) but in solid 3h the transoid rotamer is present (planar II). From 3g , 4d , and 4g mixtures of rotamers were detected in solution by pairs of 31P NMR patterns ( 3h : line broadening).  相似文献   

9.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Stannylation Experiments with NH-functional Aminoiminophosphoranes. Synthesis and Structure of the Tricyclic Stannaphosphazenes [Me2Sn(tBu2PN)NH]2 and [nBu2Sn(Ph2PN)2NH]2 Aminoiminophosphoranes tBu2P(NH)NH2 ( 1 ) and (H2NPPh2)N(Ph2PNH) ( 2 ) react with diaminostannanes R2Sn(NEt2)2 by cyclocondensation to give cyclostannaphosphazenes [Me2Sn(tBu2PN)NH]2 ( 3 ) and [R2Sn(Ph2PN)2NH]2 ( 4 a , b ) ( a : R = Me, b : R = nBu). With 2 and Me3SnNEt2 the ring compound Me2Sn(Ph2PN)2NSnMe3 ( 5 ) besides Me4Sn is formed by per-N-stannylation and Sn-methyl group transfer. The crystal structures of 3 and 4 b were determined by X-ray structure analysis. 3 forms a planar heterotricyclus containing three four-membered rings with two pentacoordinated tin atoms (space group P 1 (No. 2); Z = 1). 4 b consists of a tricyclic molecule with two puckered six-membered rings and one planar four membered tin-nitrogen ring with two pentacoordinated tin atoms (space group P 1 (No. 2); Z = 1).  相似文献   

11.
TG and DTA studies on Me3SnO2PCl2, Me2Sn(O2PCl2)2 and Ph3SnO2PCl2 were carried out under dynamic argon atmosphere. The results show that the decomposition proceeds in different stages leading to the formation of Sn3(PO4)2 as a stable product. This compound was characterized by IR spectroscopy. Decomposition schemes involving reductive elimination reactions were proposed.  相似文献   

12.
The betain like carbodiphosphorane CO2 adduct O2CC(PPh3)2 ( 1a ) can serve as a ligand versus hard Lewis acids from main group compounds. Thus, reaction of 1a with InCl3, InI3 and SnCl2 in polar solvents leads to the addition compounds [Cl3In{O2CC(PPh3)2}] ( 2 ), [Cl2SnO2CC(PPh3)2}] ( 3 ) and the salt like compound [I2In{O2CC(PPh3)2}2]I ( 4 ) in good yields. Whereas in the indium compounds 1a acts as a chelating ligand, in the tin compound the molecule coordinates with one oxygen atom only as a monodentate ligand. 4 has a pyramidal structure with a stereochemical active pair of electrons. All compounds could be characterized by X‐ray analyses and the usual spectroscopic methods.  相似文献   

13.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   

14.
Quantum chemical calculations at the BP86/TZVPP//BP86/SVP level are performed for the tetrylone complexes [W(CO)5‐E(PPh3)2] ( W‐1 E ) and the tetrylene complexes [W(CO)5‐NHE] ( W‐2 E ) with E=C–Pb. The bonding is analyzed using charge and energy decomposition methods. The carbone ligand C(PPh3) is bonded head‐on to the metal in W‐1 C , but the tetrylone ligands E(PPh3)2 are bonded side‐on in the heavier homologues W‐1 Si to W‐1 Pb . The W? E bond dissociation energies (BDEs) increase from the lighter to the heavier homologues ( W‐1 C : De=25.1 kcal mol?1; W‐1 Pb : De=44.6 kcal mol?1). The W(CO)5←C(PPh3)2 donation in W‐1 C comes from the σ lone‐pair orbital of C(PPh3)2, whereas the W(CO)5←E(PPh3)2 donation in the side‐on bonded complexes with E=Si–Pb arises from the π lone‐pair orbital of E(PPh3)2 (the HOMO of the free ligand). The π‐HOMO energy level rises continuously for the heavier homologues, and the hybridization has greater p character, making the heavier tetrylones stronger donors than the lighter systems, because tetrylones have two lone‐pair orbitals available for donation. Energy decomposition analysis (EDA) in conjunction with natural orbital for chemical valence (NOCV) suggests that the W? E BDE trend in W‐1 E comes from the increase in W(CO)5←E(PPh3)2 donation and from stronger electrostatic attraction, and that the E(PPh3)2 ligands are strong σ‐donors and weak π‐donors. The NHE ligands in the W‐2 E complexes are bonded end‐on for E=C, Si, and Ge, but side‐on for E=Sn and Pb. The W? E BDE trend is opposite to that of the W‐1 E complexes. The NHE ligands are strong σ‐donors and weak π‐acceptors. The observed trend arises because the hybridization of the donor orbital at atom E in W‐2 E has much greater s character than that in W‐1 E , and even increases for heavier atoms, because the tetrylenes have only one lone‐pair orbital available for donation. In addition, the W? E bonds of the heavier systems W‐2 E are strongly polarized toward atom E, so the electrostatic attraction with the tungsten atom is weak. The BDEs calculated for the W? E bonds in W‐1 E , W‐2 E and the less bulky tetrylone complexes [W(CO)5‐E(PH3)2] ( W‐3 E ) show that the effect of bulky ligands may obscure the intrinsic W? E bond strength.  相似文献   

15.
The reactivity of the hydrolysis product of hexaphenylcarbodiphosphorane, PPh3CHP(O)Ph2, towards different soft Lewis acids, such as CuI and Ag[BF4] are reported. While CuI exclusively binds at the ylidic carbon atom, reaction of the silver cation in CH2Cl2 leads to proton abstraction from the solvent to give the cation [PPh3CH2P(O)Ph2]+. Surprisingly, Ag+ replaces the methyl group of [PPh3CHMeP(O)Ph2]+ to produce a dimeric complex, in which Ag+ is coordinated to C and O forming an eight membered ring. The compounds were characterized by spectroscopic methods and X‐ray diffraction.  相似文献   

16.
Synthesis, Vibrational Spectra, and Crystal Structure of the Disiloxanato‐chloroberyllate (Ph4P)2[Be4Cl6(OSiMe2OSiMe2O)2] (Ph4P)2[Be4Cl6(OSiMe2OSiMe2O)2] ( 1 ) was prepared by the reaction of (Ph4P)2[Be2Cl6] with cyclo‐hexamethyl‐trisiloxane in dichloromethane solution, forming colourless, moisture sensitive crystals, which are characterized by their vibrational spectra (IR, Raman) and by an X‐ray crystal structure determination. 1 crystallizes in the triclinic space group with Z = 1 and with the lattice dimensions at 193 K: a = 1050.0(1), b = 1248.2(1), c = 1312.5(1) pm, α = 84.37(1)°; β = 76.53(1)°; γ = 70.79(1)°; R1 = 0.0349. 1 consists of (Ph4P)+ions and centrosymmetric anions [Be4Cl6(OSiMe2OSiMe2O)2]2‐, in which the four beryllium atoms are connected by the terminal oxygen atoms of the (OSiMe2OSiMe2O)2‐ ligands via two‐forked bonds to give Be2O2 four‐membered rings. The Be atoms of these units are additionally bridged by two μ‐Cl atoms. 1 is also obtained by reaction of (Ph4P)2[Be2Cl6] with Baysilon grease.  相似文献   

17.
Organolead compounds are of interest mainly as catalysts and organolead halides have proved to be very efficient materials for solar cells. Two organolead(IV) dimethylarsinates, namely catena‐poly[[triphenyllead(IV)]‐μ‐chlorido‐[triphenyllead(IV)]‐μ‐dimethylarsinato‐κ2O:O′], [Pb2(C6H5)6(C2H6AsO2)Cl]n or [(Ph3Pb)2Cl(O2AsMe2)], ( 1 ), and poly[chlorido(μ3‐dimethylarsinato‐κ3O:O,O′:O′)diphenyllead(IV)], [Pb(C6H5)2(C2H6AsO2)Cl]n or [(Ph2ClPb)(O2AsMe2)], ( 2 ), together with the triphenyllead(IV) diphenylphosphinate catena‐poly[[triphenyllead(IV)]‐μ‐diphenylphosphinato‐κ2O:O′], [Pb(C6H5)3(C12H10O2P)]n or [(Ph3Pb)(O2PPh2)], ( 3 ), have been synthesized and characterized by single‐crystal X‐ray diffraction, IR spectroscopy and mass spectrometry. In ( 1 ), a chain structure was found with alternating chloride and Pb—O—As—O—Pb arsinate bridges between five‐coordinate PbIV atoms. In ( 2 ), bidentate and chelate‐like bonded dimethylarsinate ligands form double chains with heptacoordinated PbIV atoms. In ( 3 ), a pentacoordinated PbIV atom is connected by Pb—O—P—O—Pb phosphinate bridges to form a linear chain. Obviously, the steric demand of the phenyl ligands at PbIV reduces the possibility of interconnections via polydentate ligands to one dimension only. Thus, no metal–organic frameworks (MOF) are formed but instead various chain structures are observed.  相似文献   

18.
[Et2Sn(O2AsMe2)2] ( 1 ) and [Ph2Sn(O2AsMe2)(μ‐OMe)]2 ( 2 ) were synthesized by treatment of Et2SnO and Ph2SnS with HO2AsMe2 in Methanol, respectively. The compounds were characterized by elemental analyses, vibrational spectroscopy and mass spectrometry. According to X‐ray diffraction measurements compound 1 crystallizes monoclinic in space group P21/n with cell parameters a = 804.89(3), b = 987.11(5), c = 966.42(4) pm, β = 113.354(3)°. The unit cell parameters of 2 , which crystallizes in the same space group, are a = 974.4(1), b = 1463.3(1), c = 1228.9(1) pm, β = 111.324(3)°. The (SnOAsO)4 rings of 1 are linked and form a two‐dimensional network with the SnEt groups pointing into the holes of the next layer. Compound 2 occurs as a dimer with internal Sn(OMe)2Sn bridges in the (SnOAsO)2 rings. The vibrational and mass spectra are given and discussed.  相似文献   

19.
The treatment of Me2SnCl2 and Et2SnCl2 with HO2AsMe2 in methanol leads to [Me2ClSnO2AsMe2] ( 1 ) and [Et2ClSnO2AsMe2] ( 2 ), respectively. X‐ray diffraction studies show that the O2AsMe2 groups function as bidentate bridge ligands between R2ClSn units forming polymeric chain structures. 1 consists of double chains, in which the oxygen atoms of each O2AsMe2 group of one chain interact in a chelate mode with the tin atom of the other affording seven‐coordinated tin atoms, whereas the structure of 2 is built of single chains in which the tin atoms exhibt a distorted trigonal‐bipyramidal geometry with an axial O‐Sn‐Cl angle of 160°. The vibrational and mass spectra are given and discussed.  相似文献   

20.
The crystal structure of complex [Ph2Sn(Hpir)2 ·CH3CN] shows for the first time chelation to a metal atom of piroxicam through the keto‐enolate oxygen atoms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号