首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
用氧化铝(Al2O3)、硫酸钡(Ba SO4)、锆钛酸铅(PZT)、二氧化钛(Ti O2)、气相二氧化硅R202(RSi O2)、A380(ASi O2)和沉淀相二氧化硅(PSSi O2)7种无机纳米材料制备成分散液,在单向拉伸聚丙烯(PP)隔膜表面单面涂覆制备了复合隔膜.对复合隔膜的形貌、透气性及热稳定性进行了研究,并通过线性扫描曲线和不同倍率下电池充放电循环考察了复合隔膜对电解液的电化学稳定性和电池循环性能的影响.结果表明,7种复合隔膜与空白PP隔膜相比,在140℃下的热收缩率均减小1倍以上,表明其中无机纳米材料对PP隔膜的热收缩性能有很大改善.电池循环性能研究表明,这几种复合隔膜电池循环性能都有不同程度的提高,且在较高倍率下依旧可以发挥优势(ASi O2涂层复合隔膜除外).ASi O2涂层复合隔膜电池在2 C高倍率放电时容量快速衰减,其原因可能是ASi O2过大的比表面积增加了锂离子迁移的阻力.  相似文献   

2.
以单向拉伸的PP隔膜为基膜,PVDF、PTFE、PEK-C、PES和PPSU等多种具有耐高温性能的聚合物为涂层材料,制备了有机/PP复合隔膜.对复合隔膜的形貌、透气性及热稳定性进行了研究,并考察了复合隔膜对电解液的电化学稳定性和电池循环性能的影响.研究发现,有机复合隔膜的透气性能略有降低,但热收缩性能有了明显的改善.电化学性能表明,复合隔膜在锂离子电池工作的电化学窗口性能稳定.电池循环性能发现,采用有机复合隔膜电池的放电容量普遍增加,倍率放电性能也优于使用PP隔膜的电池.  相似文献   

3.
通过静电纺丝和静电喷射技术,将三氧化二铝(Al_2O_3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间,制备出了具有"三明治"结构的P(VDF-HFP)/Al_2O_3/P(VDF-HFP)复合锂离子电池隔膜.分析了隔膜的形态结构、热收缩性能、拉伸性能、电化学性能以及隔膜在电池中的循环性能.测试结果表明,该复合隔膜比纯P(Vd F-HFP)膜拥有更高的吸液率,隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs).该复合隔膜的拉伸强度在4 MPa左右,相对应的断裂伸长率为261.57%.复合隔膜在室温下的离子电导率为1.61×10~(-3)S/cm,且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V).在电池的循环测试中,使用钴酸锂(LiCoCO_2)作为正极材料,由该复合隔膜组装的电池的首次放电比容量达到了理想的水平,为145 m A·h·g~(-1).  相似文献   

4.
通过静电纺丝和静电喷射技术, 将三氧化二铝(Al2O3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间, 制备出了具有“三明治”结构的P(VDF-HFP)/Al2O3/P(VDF-HFP)复合锂离子电池隔膜. 分析了隔膜的形态结构、 热收缩性能、 拉伸性能、 电化学性能以及隔膜在电池中的循环性能. 测试结果表明, 该复合隔膜比纯P(VdF-HFP)膜拥有更高的吸液率, 隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs). 该复合隔膜的拉伸强度在4 MPa左右, 相对应的断裂伸长率为261.57%. 复合隔膜在室温下的离子电导率为1.61×10-3 S/cm, 且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V). 在电池的循环测试中, 使用钴酸锂(LiCoCO2)作为正极材料, 由该复合隔膜组装的电池的首次放电比容量达到了理想的水平, 为145 mA·h·g-1.  相似文献   

5.
以聚偏氟乙烯(PVDF)和硅藻土为原料,通过静电纺丝法制备PVDF@硅藻土复合纤维膜,用于锂离子电池隔膜。 研究了隔膜的吸液率、热稳定性和电化学性能等。 添加硅藻土可有效提高复合膜的电解液吸收率和电化学性能,其中吸液率可达623.6%,相比于PVDF膜和聚丙烯(PP)膜具有优异的循环性能和倍率性能。  相似文献   

6.
采用两步溶液法合成了一种具有高度氧缺位的黑色介孔二氧化钛, 并将其涂覆在隔膜表面作为锂硫电池复合隔膜, 研究了其在锂硫电池中的电化学性能. 结果表明, 氧缺位的黑色介孔二氧化钛材料不仅展现出良好的导电性, 还能加强对多硫化物的物理和化学吸附能力, 从而显著提高锂硫电池的放电比容量(0.1C倍率下首次放电比容量为1257 mA·h/g)和循环性能(循环100次后放电比容量为821 mA·h/g).  相似文献   

7.
通过钛酸丁酯(TBTi)在聚偏氟乙烯(PVDF)溶液中水解原位生成二氧化钛(TiO2),采用静电纺丝方法制备了PVDF/TiO2复合隔膜,并考察了TiO2含量对隔膜表面形貌、热学性能、力学性能及聚合物电解质电化学性能的影响.结果表明,隔膜的拉伸强度和断裂伸长率由于TiO2的加入得到显著提高,最大增幅分别达到228.6%和244.8%,同时聚合物电解质的电化学性能也得到了增强,室温离子电导率从3.9 mS/cm增加到5.1 mS/cm.  相似文献   

8.
隔膜是锂离子电池的关键材料,在极片间起绝缘和提供离子通道的作用.本文以如何构建耐高温的隔膜、如何提高隔膜的离子电导率为重点,介绍了锂电隔膜研究及产业化技术进展,内容主要包括隔膜性能的影响因素、凝胶聚合物电解质膜、拉伸法制备隔膜及其改性、隔膜制造的新方法和新材料.最后展望了隔膜的发展前景.  相似文献   

9.
隔膜在锂离子电池中起着防止正负极直接短路和提供离子传输通道的作用,决定着电池的安全性能.在本文中,我们利用锂-铜电池的短路时间建立了一种评价隔膜安全性能的方法 .通过对电池短路时间的研究发现,对于同一种类型的隔膜,短路时间与隔膜厚度和内阻的线性相关度较高,隔膜厚度和内阻的增加均能延长电池的短路时间.同一厚度不同类型的隔膜,其电池的短路时间与隔膜自身的微孔结构相关.电池的短路时间与隔膜的穿刺强度之间的线性相关程度较低,结合电池短路后隔膜表面枝晶形貌的观察,我们推测枝晶是沿隔膜的孔道持续生长最终穿透隔膜,而非刺穿隔膜导致的电池短路.利用不同厚度的隔膜组装锂硫电池,发现循环寿命与隔膜厚度具有显著线性相关性,验证了测试方法在实际电池使用中的有效性.同时,研究也证实,利用功能隔膜调控锂的沉积行为、抑制锂的枝晶沉积能极大延长电池的短路时间,提升电池的安全性能,这为新型高安全性复合隔膜及电池的研究和设计提供了新的思路和理论依据.  相似文献   

10.
先利用羟基化多壁碳纳米管(MWCNTs-OH)与纸纤维制备了复合纤维纸(MWCNTs-OHP),然后将该复合纤维纸夹在两层PP隔膜之间组装三明治结构隔膜(PP@MWCNTs-OHP@PP)并应用于锂硫电池.利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化学测试结果表明,PP@MWCNTs-OHP@PP三明治隔膜有效提高了锂硫电池的性能.在0.1C倍率下,电池首次放电比容量达到1532 m A·h/g,活性物质的利用率达到91.5%.在1C倍率下充放电循环500周后,放电比容量依然维持516 m A·h/g,每周循环衰减率为0.028%,库仑效率保持在96.4%以上.充放电倍率从3C减小到0.1C后,放电比容量从336 m A·h/g恢复到820 m A·h/g,显示出极佳的倍率性能.  相似文献   

11.
锂离子电池中SnCu_x/CMS复合材料的制备   总被引:1,自引:0,他引:1  
刘宇  解晶莹  杨军  王可  王保峰 《电化学》2003,9(1):87-92
将亚微米SnCux合金颗粒分布于中间相碳微球(CMS)载体表面构成的复合材料,电化学测试表明其制备的电极可逆比容量390mAhg-1,相对单纯CMS电极提高26%;第二次循环后电极充放电效率接近100%,循环30次后容量衰减率低于5%.复合材料的电化学性能受合金含量、合金颗粒与载体间的结合强度,合金颗粒在载体表面的分布均匀程度,以及合金颗粒尺寸等因素影响.该类复合材料可用作为锂离子电池中的负极.  相似文献   

12.
本文采用市售纳米硅为硅源,以软化点低、得碳率高、价格便宜的煤沥青作为碳源,通过两步包覆法制备了煤沥青基硅/碳(Si/C/C)复合物,并研究其作为锂离子电池负极材料的电化学性能。 结果表明,所得复合物的粒径在300~350 nm间,Si纳米粒子被C包覆并相互连结成C-Si-C网络结构,其中Si含量为27%的硅/碳复合物(Si/C/C-27%)作为锂电池电极材料表现了良好的储锂性能。 在0.1 A/g的小电流密度下,Si/C/C-27%的放电比容量为1281 mA·h/g;在3 A/g的大电流密度下,其放电比容量仍能保持在582 mA·h/g,表现了良好的倍率性能。Si/C/C-27%在2 A/g的电流密度下经过100次的循环后其比容量保持率为76.61%,表现了良好的循环稳定性。 相比于煤沥青基碳的一次包覆所得的硅/碳复合材料(Si/C),Si/C/C有效提高了Si纳米粒子的导电性并抑制了其在嵌锂和脱锂过程中的体积膨胀。 本文提出的二次包覆的新方法为制备具有优异电化学性能的锂离子电池负极材料提供了新的研究思路。  相似文献   

13.
BaFeSi/C复合物作为锂离子电池负极材料的研究   总被引:1,自引:0,他引:1  
冯瑞香  董华  艾新平  杨汉西 《电化学》2004,10(4):391-396
采用机械球磨法制备BaFeSi/C复合物,并考察了其作为锂离子电池负极材料的电化学性能.结果表明,这种复合材料具有较高的初始放电容量、合适的充放电平台和良好的循环可逆性.XRD和XPS研究证明:BaFeSi/C复合物循环性能的提高主要源于惰性导电组分FeSi2、BaSi2和外层石墨骨架的协同作用,它们的存在不仅有效地缓冲了活性组分硅的体积变化,同时在很大程度上增强了复合材料的电子导电性和离子导电性.  相似文献   

14.
纳米锡/硬碳复合材料作为嵌锂负极的研究   总被引:1,自引:0,他引:1  
利用金属铁和钴纳米颗粒的催化活化作用,制备了多孔硬碳球.应用聚焦离子束切割技术,观察到扩孔后的硬碳球中充满彼此连通的发达中孔.在此多孔硬碳球中填入纳米锡(Sn)颗粒,对复合材料的电化学性能进行了测试.  相似文献   

15.
An ordered mesoporous carbon-silica-titania material was prepared using the tetra-constituents co-assembly method. As regards its anode performance in lithium ion batteries, the composite material anode exhibited a high capacity (875 mAh g(-1)), a higher initial efficiency (56%) and an improved rate.  相似文献   

16.
Silicon/carbon composite materials are prepared by pyrolysis of pitch embedded with graphite and silicon powders. As anode for lithium ion batteries, its initial reversible capacity is 800–900 mAh/g at 0.25 mA/cm2 in a voltage range of 0.02/1.5 V vs. Li. The material modification by adding a small amount of CaCO3 into precursor improves the initial reversibility (η1=84%) and suppresses the capacity fade upon cycling. A little higher insertion voltage of the composites than commercial CMS anode material improves the cell safety in the high rate charging process.  相似文献   

17.
采用溶胶-凝胶法, 用二氧化钼(MoO2)和C共同包覆Si/石墨粒子制备了Si/石墨/MoO2/C锂离子电池负极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 循环伏安(CV)和电化学阻抗(EIS)等分析了材料的形貌和性质. 结果表明, MoO2/C的共包覆在缓解材料体积膨胀的同时提高了材料的电子和离子电导率, 进而提高了材料的电化学性能. 复合材料的首次充电比容量为2494 mA·h/g, 首次库仑效率为72%, 经过100次循环后比容量为636.6 mA·h/g.  相似文献   

18.
Traditional lithium‐ion batteries that are based on layered Li intercalation electrode materials are limited by the intrinsically low theoretical capacities of both electrodes and cannot meet the increasing demand for energy. A facile route for the synthesis of a new type of composite nanofibers, namely carbon nanofibers decorated with molybdenum disulfide sheets (CNFs@MoS2), is now reported. A synergistic effect was observed for the two‐component anode, triggering new electrochemical processes for lithium storage, with a persistent oxidation from Mo (or MoS2) to MoS3 in the repeated charge processes, leading to an ascending capacity upon cycling. The composite exhibits unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior high‐rate capability, suggesting its potential application in high‐energy lithium‐ion batteries.  相似文献   

19.
用液相沉淀-热解法合成了一系列结构和组成不同的锂离子电池纳米锡锌复合氧化物贮锂材料, 通过XRD、TEM和电化学测试对材料进行了表征. 测试结果表明, 非晶态ZnSnO3负极材料的初始可逆贮锂容量为844 mA·h/g, ZnO·SnO2负极材料的初始可逆贮锂容量为845 mA·h/g, SnO2·Zn2SnO4复合物负极材料初始可逆贮锂容量为758 mA·h/g, 循环10周后, 三者的充电容量分别为695, 508和455 mA·h/g, 表明非晶态结构的锡锌复合氧化物具有较好的电化学性质, 随着样品中晶体的形成, 该类型负极材料的贮锂性能下降.  相似文献   

20.
新型锂离子电池聚合物电解质的制备   总被引:13,自引:1,他引:12  
应用倒相法,以PVDF-HFP(偏氟乙烯-六氟丙烯)的混合物为基体制备锂离子电池电解质基质,制得的多孔PVDF基质薄膜具有优良的化学性能及机械性能,其拉伸强度为102kg/cm2,吸附锂离子电池电解液(1mol/LLiPF6的EC/DEC溶液)的能力达到自身重量的350%以上,吸液后其室温电导率在10-3S/cm以上,用它组装成原理电池以后呈现了良好的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号