首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
锂硫电池硫膨胀石墨正极材料的电化学性能   总被引:1,自引:0,他引:1  
应用高温气相扩散沉积法由单质硫制备硫膨胀石墨.该硫膨胀石墨正极可降低反应界面电荷传递阻抗,提高扩散阻抗抑制单质硫或多硫化物在充放电过程的穿梭.其首次放电容量达到972 mAh.g-1,容量保持率为78%,循环效率在80%以上.  相似文献   

2.
将硫代硫酸钠(Na2S2O3)与氧化石墨烯(GO)的混合溶液,在酸性条件下经过一步水热反应制备还原氧化石墨烯/硫(RGO/S)复合正极材料.实验探索了水热温度、反应时间、碳硫质量比例对材料的影响.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电对材料进行分析.结果表明在180°C下,碳硫质量比为3:7时,水热12 h得到的RGO/S复合材料具有优异的循环性能,首次放电比容量为931 mAh?g-1,50次循环之后其比容量还保持在828.16 mAh?g-1;RGO/S复合材料的充放电库仑效率在95%以上;同时RGO/S复合材料的倍率性能相比于单质硫有很大提高.一步水热法能够使硫分子均匀分布在石墨烯片层结构中,同时加强了石墨烯表面基团对硫分子的固定作用.  相似文献   

3.
天然石墨经过浓硫酸氧化处理,酚醛树脂包覆并高温碳化后形成具有核壳结构的碳包覆氧化天然石墨复合材料.采用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射(XRD),激光显微拉曼光谱(Raman)等检测技术对氧化处理以及酚醛树脂热解碳包覆前后天然石墨材料的结构与形貌进行分析与表征.结果表明,氧化处理与适量的酚醛树脂热解碳包覆有效修复了天然石墨表面的一些缺陷结构,使其表面更为光滑.电化学测试结果显示,经过氧化处理与酚醛树脂热解碳包覆后天然石墨材料电化学性能得到明显提高.酚醛树脂包覆量为9%时,复合材料表现出最好的电化学性能,其首次放电比容量为434.0mAh·g-1,40次循环后,放电比容量保持在361.6mAh·g-1,而未经处理的天然石墨放电比容量仅为332.3mAh·g-1.该改性方法有效提高了天然石墨材料的比容量,对其进一步应用具有重要意义.  相似文献   

4.
在锂硫电池正极材料的研究中,碳材料可以有效改善电池倍率及循环性能。为了提高锂硫电池的高倍率放电性能,通过水热合成的方法,制备了由非均匀粒径碳球组成的碳材料。与硫热合成后,硫均匀分布在碳材料表面及周围,复合材料含硫量为52wt%。0.2C放电电流下,首次放电比容量为1 174 m Ah·g-1,100次循环后放电比容量为788 m Ah·g-1。在4C的放电电流下,放电比容量稳定维持在600 m Ah·g-1,循环过程中,库伦效率高于90%。该碳材料有良好的导电网络,且制备方便,成本低廉,对于穿梭效应和放电过程中的膨胀效应有一定的抑制作用,是一种优秀的正极材料。  相似文献   

5.
将棕榈纤维经过炭化和氢氧化钾活化制备高度有序的管状碳材料(OCT),并且将其应用于锂硫电池。所制备的OCT具备高的比表面积和大的孔体积,可以有效地储存硫,合成方法简单且成本较低。同时,所制备的S@OCT复合物呈现出优异的电化学性能。载硫量为65%(w/w)的S@OCT复合材料在0.2C(1C=1 672 mA·g-1)的倍率下库伦效率接近于100%,其首圈容量高达1 255.2 mAh·g-1(1.8 mAh·cm-2),并且100圈后容量保持在756.9 mAh·g-1(1.09 mAh·cm-2)。使用5C的大电流测试时,其首圈容量达到了649.1 mAh·g-1(0.93 mAh·cm-2),且在100圈后容量保持在504.2 mAh·g-1(0.72 mAh·cm-2)。  相似文献   

6.
为提高锂硫电池的比容量和循环性能,本文使用纳米碳化钛(TiC)作为涂层制备得到TiC/Celgard涂层隔膜,并探究其对锂硫电池性能的影响. 电化学性能测试结果表明,涂层隔膜能有效提高电池在不同倍率下的比容量以及电池的循环性能,在2C倍率下仍表现出650 mAh·g-1的比容量,0.5C循环100周容量仍能保持在843.1 mAh·g-1.  相似文献   

7.
高性能锂-硫电池用复合正极的构造与粘结剂   总被引:1,自引:0,他引:1  
采用球磨混合及热处理方法制备了含有多壁碳纳米管(MCNTs)的硫基复合正极材料,利用X射线衍射(XRD)和扫描电子显微镜(SEM)测定材料的结构和形貌,较系统地研究了MCNTs含量和粘结剂种类对硫基复合正极容量、循环稳定性和自放电行为等的影响.结果表明:MCNTs的合适含量为5%-8%(w,质量分数),以水性粘结剂环糊精制备的硫基复合正极电化学性能最佳.锂-硫电池在常温和半充电状态下放置30天几乎没有自放电;当电流倍率为0.1C时,β-环糊精为粘结剂的正极初始充电容量为687.7mAh.g-1,100次循环以后可逆容量为623.8mAh.g-1,容量保持率达90.7%.  相似文献   

8.
锂硫电池的商用化受到硫和多硫化锂低的电导率、多硫化锂在有机电解液中的溶解、放电过程中硫的体积膨胀等因素的制约。我们通过自模板法制备了具有石墨化孔壁结构的介孔碳纳米纤维(MCNF),并利用这种结构将硫和多硫化锂封装在碳骨架内。具有石墨化孔壁结构的一维MCNF能够在循环中为硫和多硫化锂提供良好的导电网络。MCNF中小的介孔能够抑制长链多硫化锂的扩散。另外,MCNF大的孔容能够负载比较多的硫,并且能够为硫的放电膨胀提供足够的纳米空间。本工作制备的MCNF-硫纳米复合材料在0.8 A·g-1的电流密度下,经过100次循环后仍有820 mAh·g-1的比容量。  相似文献   

9.
采用热丝化学气相沉积法先在铁箔上沉积了致密的碳纤维膜,后通过加热渗硫法制得硫/碳纤维复合膜,并将其用作锂硫电池正极材料。通过扫描电子显微镜和X射线衍射表征膜的形貌和结构,采用恒流充放电法和阻抗测量法测试复合膜的电化学性能。结果表明,随热丝与铁箔基底间距减小,碳纤维膜致密度先升高后降低;随H2与(Ar+C3H6O)的体积流量比减小,碳纤维膜致密度升高。当丝基距为6 mm,流量比为30/40时,铁箔上沉积了厚度为50μm的致密碳纤维膜,其中碳纤维有良好的垂直取向性和较高结晶度。在硫/碳纤维复合膜正极中,密集的碳纤维形成均匀分布且垂直取向性良好的导电骨架,当电流密度为0.4 mA.cm-2时,硫/碳纤维复合膜正极的初次放电比容量为1 128 mAh.g-1,50次循环后的放电比容量为811 mAh.g-1。  相似文献   

10.
在锂硫电池正极材料的研究中,碳材料可以有效改善电池倍率及循环性能.为了提高锂硫电池的高倍率放电性能,通过水热合成的方法,制备了由非均匀粒径碳球组成的碳材料.与硫热合成后,硫均匀分布在碳材料表面及周围,复合材料含硫量为52wt%.0.2C放电电流下,首次放电比容量为1174mAh·g-1,100次循环后放电比容量为788mAh·g-1.在4C的放电电流下,放电比容量稳定维持在600mAh·g-1,循环过程中,库伦效率高于90%.该碳材料有良好的导电网络,且制备方便,成本低廉,对于穿梭效应和放电过程中的膨胀效应有一定的抑制作用,是一种优秀的正极材料.  相似文献   

11.
Reduced graphene oxide/sulfur/polyaniline (referred to RGO/S/PANI) composite was self-assembled through in situ synthesis and used to investigate the electrochemical properties of lithium/sulfur cells. The RGO/S/PANI composite possessed 809.3/801.9 mAh g?1 of initial charge/discharge capacities, higher than 588.3/588.2 mAh g?1 for reduced graphene oxide/sulfur (referred to RGO/S) and 681.4/669.9 mAh g?1 for sulfur/polyaniline (referred to S/PANI) at similar conditions. The RGO/S/PANI composite obtained 400 mAh g?1 at 2 C and good reversible capacities of 605.5 and 600.8 mAh g?1 at 100th charge/discharge cycle at 0.1 C, in comparison with low electrochemical performance of RGO/S and S/PANI. The improved properties could be attributed to the collaboration of RGO and PANI. Co-generation of RGO and sulfur acted as seeds for their depositions, stimulated their uniform distributions, and restricted the agglomeration of sulfur particles in situ synthesis. Polyaniline coated RGO/S and stabilized the nanostructure of RGO/S/PANI in repeated charge/discharge cycles. In addition, RGO and PANI provided many electron channels to enhance sulfur conductivity and sufficient void space for sulfur swelling during charge/discharge cycles.  相似文献   

12.
使用廉价的硅铝合金前驱体,通过简单的化学沉积方法制备了新型双金属(Sn/Ni)掺杂多孔硅微球(pSi@SnNi)。pSi@SnNi复合材料的三维多孔结构可以缓冲硅在锂化过程中的巨大体积膨胀,增加储锂活性位点。双金属(Sn/Ni)的掺杂可以提高硅的电子导电性,改进pSi的结构稳定性。由于其独特的组成和微观结构,具有适当Sn/Ni含量的pSi@SnNi复合材料显示了较大的可逆储锂容量(0.1 A·g-1下为2 651.7 mAh·g-1)、较高的电化学循环稳定性(1 A·g-1下400次循环后为1 139 mAh·g-1)和优异的倍率性能(2.5 A·g-1下为1 235.8 mAh·g-1)。  相似文献   

13.
Activated carbon aerogels (ACAs) with high bimodal porosity were obtained for lithium/sulfur batteries by potassium hydroxide (KOH) activation. Then sulfur–activated carbon aerogels (S–ACAs) composites were synthesized by chemical deposition strategy. The S–ACAs composites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy, and N2 adsorption/desorption measurements. It is found that the activated carbon aerogels treated by KOH activation presents a porous structure, and sulfur is embedded into the pores of the ACAs network-like matrix after a chemical deposition process. The Li/S–ACAs (with 69.1 wt% active material) composite cathode exhibits discharge capacities of 1,493 mAh g?1 in the first cycle and 528 mAh g?1 after 100 cycles at a higher rate of C/5 (335 mA g?1). The S–ACAs composite cathode exhibits better electrochemical reversibility, higher active material utilization, and less severe polysulfide shuttle than S–CAs composite cathode because of high bimodal porosity structure of the ACAs matrix.  相似文献   

14.
通过共沉淀法制备锂离子电池富锂锰基正极材料Li1.2Mn0.534Ni0.133Co0.133O2,并对其进行AlF3包覆。实验结果表明,通过AlF3包覆,材料的电化学性能得到明显提高。在0.2C下,包覆前材料的首次放电比容量为253 mAh.g-1,首次充放电效率仅为88.8%。经过AlF3包覆,材料的首次放电比容量提高到294 mAh.g-1,首次充放电效率高达96.4%。同样,在1.0C下循环50次,未包覆材料的放电比容量由225 mAh.g-1降到185 mAh.g-1,容量保持率仅为82.2%。经过AlF3包覆,材料的放电比容量由230mAh.g-1仅降为222 mAh.g-1,容量保持率高达96.5%。  相似文献   

15.
采用水基流变相辅助的固相法,以异质碳蔗糖和石墨为碳源,合成了LiMn0.8Fe0.2PO4/C复合材料,研究了不同石墨加入方式对所制复合材料电化学性能的影响,并对所制备的LiMn0.8Fe0.2PO4/C复合材料进行了X射线衍射(XRD)、N2吸附-脱附测试、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征。结果表明,不同石墨包覆工艺对材料结构和电化学性能具有显著影响。前驱体煅烧后再加入石墨获得的样品纯度高,形貌呈均一的椭圆形,在0.1C下的放电比容量为149 mAh·g-1,达到其理论比容量的87%;在5C下最大的放电比容量为133 mAh·g-1;在2C倍率下经过300次循环后比容量维持在127 mAh·g-1,衰减率仅为1.9%,表现出了优良的循环稳定性。  相似文献   

16.
A yolk-shell sulfur/carbon (S/C) composite for the cathode of lithium–sulfur batteries was successfully prepared by an accessible method with tetrahydrofuran as solvent. The as-prepared composites are characterized by thermal gravimetric, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption. In this composite, sulfur particle is encapsulated in the carbon shell even entering into the micropores of carbon Bp2000. The electrochemical performance of the S/C composites is evaluated. The results indicate that the S/C composite with 50 wt% sulfur content shows good reversibility, excellent rate capability, and slow degradation. It delivers an initial capacity of 784.4 mAh g?1 (based on sulfur weight) and preserves at 598.3 mAh g?1 after 195 cycles at 1C. It achieves a high-capacity retention of 76.27 % from the 5th to 200th cycle, and as high as 91.19 % during the latter 150 cycles. The improvement is mainly attributed to the favorable structure of the S/C composite, in which the carbon cannot only facilitate transport of electrons and Li+ ions but also trap polysulfides and retard the shuttle effect during charge/discharge process.  相似文献   

17.
制备了以十二烷基硫酸钠(SDS)为模板的介孔碳,并将介孔碳和单质硫采用熔融渗透法复合制得硫/介孔碳复合材料。SEM、TEM和BET结果显示介孔碳成直径约为500 nm的大小均一的球体,存在孔径为2 nm的微孔;单质硫充分填充在介孔碳的微孔中。以硫/介孔碳复合物作为锂硫电池正极材料时显示出高的电化学性能。初始放电容量高达1519 mAh·g-1,在200 mA·g-1的电流密度下充放电200个循环后依然能保持在835 mAh·g-1。硫/介孔碳复合材料的高倍率性能和优异的循环稳定性,源于介孔碳良好的导电性及其孔结构的固硫作用。  相似文献   

18.
以三价铁化合物作为铁源,采用碳热还原法一步合成得到锂离子电池正极材料LiFePO4。利用X射线衍射仪、扫描电镜、碳硫分析法和电化学性能测试方法对磷酸铁锂材料的物相结构、表面形貌、含碳量(质量分数)以及电性能进行分析研究。讨论了烧结温度、烧结时间和掺碳量对材料电性能的影响。结果表明,LiFePO4的电性能与烧结温度、时间以及掺碳量有密切的关系,在优化试验条件下制备的正极材料LiFePO4,以电流密度为17 mA·g-1充放电,首次放电容量达到141.8 mAh·g-1,80次循环后放电容量为137.7 mAh·g-1,容量保持率为97.1%。  相似文献   

19.
One‐dimensional manganese oxide nanobelt bundles with birnessite‐type structure have been synthesized by a hydrothermal process in a NaOH solution employing K‐type layered manganese oxide as a precursor. The obtained manganese oxide nanobelt bundles exhibit excellent discharge properties and cycle stability. The initial capacity is 376 mAh·g?1 and the reversible capacity of 243 mAh·g?1 is maintained after the 50th cycle at a current density of 20 mA·g?1. Meanwhile, the manganese oxide nanobelt bundles show an excellent cycle performance even if at relative high current density.  相似文献   

20.
长期以来,由于M nO2碱性电池具有放电容量较大,比能量较高,低温性能优良,性能可靠等优点,因此传统的碱性电池一直采用M nO2作为正极活性物质,然而其容量的进一步提高受到了M nO2电极的限制[1]。随着人们对化学电源需求的日益扩大和现有电极材料资源的日益萎缩,寻求放电容量大、  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号