首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The crystal and molecular structures of three sydnone derivatives are reported. The compound 3-cyclohexylsydnone crystallizes in space group C2/c of the monoclinic system with sixteen molecules in a cell of dimensions a = 19.326 (3), b = 9.471 (2), c = 20.005 (4)Å, β = 106.85(1)°. The structure has been refined to a final value of 0.0581 for the conventional R-factor based on 2222 independent observed intensities. Form I of 3-(3-pyridyl)sydnone crystallizes in space group P2/n of the monoclinic system with eight molecules in a cell of dimensions a = 7.317(2), b = 9.283 (2), c = 20.891 (6) Å, β = 99.61(2)°. The structure has been refined to a final value of 0.0514 for the conventional R-factor based on 1208 independent observed intensities. Form II of 3-(3-pyridyl)sydnone crystallizes in space group P21/c of the monoclinic system with eight molecules in a cell of dimensions a=9.073 (2), b = 22.267 (5). c = 7.494(2)Å, β = 112.15 (2)°. The structure has been refined to a final value of 0.0462 for the conventional R-factor based on 1330 independent observed intensities. Each of the three structures contains two crystallographically independent molecules in the cell. In the case of 3-cyclohexylsydnone, one of the independent molecules exhibits disorder around the exocyclic bond at N(3). A comparison of bond lengths indicates that the (electron donating) cyclohexyl group brings about enhanced electron density in the N(3)-C(4) bond, and possibly in the N(3)-N(2) bond. All three structures studied here exhibit intermolecular hydrogen bonding involving C(4)-H(4)…O(6) interactions. Although there are no stacking interactions in the cyclohexyl derivative, there is evidence for such interactions in the 3-pyridyl derivatives.  相似文献   

2.
The title compound has been synthesized and its crystal structure was determined by X-ray crystallographic method. The crystal is triclinic, space group P-1, with unit cell dimensions a = 6.146 (5), b = 8.473(6), c = 14.383(5) Å; α = 77.47 (4), β = 82.84 (4), γ = 69.00 (8)° and Z = 2. The results obtained reveal that the molecule of the title compound keeps a long conjugative system involving CC double bond, cyclopropane ring, carbonyl group and isoxazolinone ring and adopts a low energy conformation including s-trans of CC double bond, s-cis of carbonyl group with respect to the three-membered ring and like-s-trans of carbonyl group with the carbonyl group within the heterocyclic moiety.  相似文献   

3.
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with α‐naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium–copper‐catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole–naphthyl C—C—C—C torsion angle of 177.5 (4)°. The five‐membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S—C [1.751 (4) and 1.838 (4) Å] and two N—C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.  相似文献   

4.
The structure of the title compound, 4‐allyl‐2‐methoxy‐6‐[(4‐nitrophenyl)diazenyl]phenyl benzoate, C23H19N3O5, displays the characteristic features of azobenzene derivatives. The azobenzene moiety of the molecule has a trans configuration and in this moiety, average C—N and N=N bond lengths are 1.441 (3) and 1.241 (3) Å, respectively.  相似文献   

5.
1INTRoDUCTIONa-Thiocarbonylthioformamidesweresynthesizedin198o[l~2i,however,thereisnoreportofthesecompoundsconcerningtheirpropertiesandreactionactivitiest33.Accordingtotheirstructure,theyseemtohavereactionwithdienophi1es,likesubsti-tutedolefinicandacetylenicdienophilestoleadcorrespondingDiels-Alderproduct.xylene(15ml),diethylbutynedioicester(O.2g,1.2mmol)wasadded,themix-turewasrefluxedfor20h,thencooledtoroomtemperatureandconcentrated.Theresiduewaspurifiedbysilicagelcolumnusingacetone/petr…  相似文献   

6.
The title compound has been synthesized by the reaction of α-dithionaphthoic acid with CuCl2 in pyridine or by recrystallizing Cu4(α-C10H7CSS2)4 ? 1/2CS2 in a mixture of pyridine and alcohol. The structure of the title compound is determined by a single-crystal X-ray diffraction analysis. The crystal belongs to triclinic space group with unit cell parameters: a=7.085(2)Å, b= 8.672(3)Å and c=13.598(5)Å; a=92.40(3)°, β=102.59(4)° and γ=105.67(4)°; V=780.6Å2; Z=1. The structure was refined to R=0.058 for 2390 reflections. The molecule of the title compound sits on a center of symmetry. The shorter Cu—Cu bond length (2.606Å) shows considerable interaction between copper atoms. If the Cu—Cu interaction is ignored, the neighbouring S and N atoms are coordinated to copper atom in a configuration of distorted tetrahedron.  相似文献   

7.
Molecular and Crystal Structure of 9λ4-Thia-2,4,6,8,10,11-hexaaza-1λ5,3λ5,5λ5,7λ5-tetraphosphabicylo[5.3.1]undeca-1,3,5,7(11),8,9-hexaene, Cyclotetraphosphazene Bridged by a Sulfur Diimide Group We have carried out an X-ray structure analysis of the title compound ( 1 ). 1 crystallizes in the monoclinic space group P21/b with a = 9.436(4), b = 20.102(7), c = 11.622(5) Å, γ = 103.52(8)°, Z = 8. There are two molecules in the asymmetric unit, which in approximation can be transformed one into the other by additional symmetry elements of a substructure of a space group B2/b. The S = N bond lengths are 1.53 Å. The P? N bonds connecting the SN2 system are 1.666 Å long. They are significantly longer than the P? N multible bonds in the P4N4 ring within a range of 1.517 to 1.565 Å. The sulfur diimide unit and its substituents are coplanar causing a half-boat conformation of the heterocyclic six membered ring. The cyclotetraphosphazene ring shows a flattened crown-saddle conformation, the phosphorous atoms arranged nearly at the corners of a square. Influenced by crystal packing there exist small deviations from the molecular mirror plane and also differences in conformation between the two molecules of the asymmetric unit.  相似文献   

8.
In the title compound, C35H26ClNO, the four‐membered β‐lactam ring is essentially planar, with a maximum deviation of 0.012 (1) Å for the N atom. The C—C bond lengths in the β‐lactam ring are 1.591 (2) and 1.549 (2) Å. The two phenyl rings attached to the β‐lactam ring are nearly perpendicular to each other [83.2 (1)°].  相似文献   

9.
On Chalcogenolates. 191. Esters of 2-Oxophenyldithioacetic Acid. 2. Crystal and Molecular Structure of the Methyl Ester The title compound C6H5? CO? CS? SCH3 crystallizes with Z = 2 in the triclinic space group P1 with cell dimensions (?60°C) a = 6.236(4) Å, b = 7.972(2) Å, c = 9.589(4) Å, α = 88.42(3)°, β = 75.39(5)°, γ = 81.54(4)°. The structure has been determined from single crystal X-ray data measured at ?60°C and refined to R = 0.085 and Rw = 0.087 for 2307 independent reflections. With nearly 20° the C?O bond is turned out of the plane of the phenyl ring.  相似文献   

10.
The crystal and molecular structures of the title compound, 3‐bromo‐3‐(di­benzyl­phenyl­phospho­nio)‐2,2‐di­phenyl‐5‐trifluoromethyl‐1H‐benzo­[e][1,2]­phosphanickelepine, [NiBr(C22H17F3P)(C20H19P)], which was obtained as the major regioisomer from insertion of HCCCF3 into the Ni—C bond of the five‐membered phosphanickelacycle [NiBr(o‐C6H4CH2PPh2‐κ2C,P){PPh(CH2Ph)2}], have been determined. Principal geometric data include the Ni—X bond lengths Ni—Br 2.3343 (4) Å, Ni—P 2.1867 (7) and 2.2094 (7) Å, and Ni—C 1.882 (3) Å, and the two trans angles P—Ni—P 171.55 (3)° and Br—Ni—C 176.88 (9)°.  相似文献   

11.
In the selenium‐containing heterocyclic title compound {systematic name: N‐[5‐(morpholin‐4‐yl)‐3H‐1,2,4‐diselenazol‐3‐ylidene]benzamide}, C13H13N3O2Se2, the five‐membered 1,2,4‐diselenazole ring and the amide group form a planar unit, but the phenyl ring plane is twisted by 22.12 (19)° relative to this plane. The five consecutive N—C bond lengths are all of similar lengths [1.316 (6)–1.358 (6) Å], indicating substantial delocalization along these bonds. The Se...O distance of 2.302 (3) Å, combined with a longer than usual amide C=O bond of 2.252 (5) Å, suggest a significant interaction between the amide O atom and its adjacent Se atom. An analysis of related structures containing an Se—Se...X unit (X = Se, S, O) shows a strong correlation between the Se—Se bond length and the strength of the Se...X interaction. When X = O, the strength of the Se...O interaction also correlates with the carbonyl C=O bond length. Weak intermolecular Se...Se, Se...O, C—H...O, C—H...π and π–π interactions each serve to link the molecules into ribbons or chains, with the C—H...O motif being a double helix, while the combination of all interactions generates the overall three‐dimensional supramolecular framework.  相似文献   

12.
Herein we report synthesis of a new brucite type copper hydroxide squarate, Cu3(OH)2(C4O4)2·4H2O [P21/c, a = 5.6437(4) Å, b = 12.8357(9) Å, c = 9.1507(6) Å, β = 95.892(1)° and Z = 2] by hydrothermal method, and its characterization by single crystal diffraction analysis as well as by IR spectroscopy. The rather wide spread of Cu–O bond lengths, can be primarily rationalised by the Jahn‐Teller effect, and secondarily by the connectivities of the CuO6 octahedra.  相似文献   

13.
Crystals of 1,1,5,5-tetramethylcyclodecane-8-carboxylic acid are monoclinic, a = 9.22 Å, b = 14.81 Å, c = 11.58 Å, β = 111° 0′, space group P21/c with 4 molecules in the unit cell. The structure has been solved by direct methods and refined by full-matrix least-squares analysis of three-dimensional intensitiy data. The conformation of the ring differs from the previously observed cyclodecane conformation, but the detailed results are abnormal in a number of ways (extremely short C? C bond lengths, wide C? C? C bond angles, large temperature factors). The possibility is discussed that the crystal structure is disordered.  相似文献   

14.
Abstract

The crystal and molecular structure of N-(O,O-diisopropyl phosphoryl)-trans-4-hydroxy-D,L-proline has been determined by X-ray diffraction analysis and is compared with proline or hydroxyproline residue in a peptide chain described in the literature. The compound crystallized in orthorhombic system with space group P212121, a=6.934(2), b=8.694(3), c=26.727(7) Å, V=1611.3(8) Å3, Z=4, Dx=1.22 g/cm3. The structure was solved by direct method and refined by anisotropic least squares to a discrepancy index R=0.072. In the compound, the nitrogen atom is trigonal and its remaining 2p orbital is conjugated with the P?Oπ system; the conformation of the phosphorimidate function is favoured by the trans orientation of the P=O bond with respect to the N-C4 bond. In the pyrrolidine ring moeity, the C2-C1-N-C4 atoms are nearly copolnar and the C3 atom is out of the plane by about 0.47 Å.  相似文献   

15.
[Mo3,OS3(dtp)4(H2O)] reacts with NaOAc·3H2O in Py to give the title compound. The crystal data are as follows: [Mo2OS3)(OAc)2(dtp)2·Py]?0.5H,O(dtp = [S3P(OC2H5)2]?, Py = C5H5N); M = 976.64; triclinic; space group P1 ; a=11.704(5), b=14.169(7), c= 11.688 (5) Å α=109.94(4) β = 91.53(4), γ = 91.93(4)°; V= 1819(1) Å2; Z=2; Dc = 1.78 g·cm?3 λ(Mo Kα) = 0.71069 Å μ=15.15 cm?1; F(000) = 970 T=296 K; final R=0.071 for 1652 reflections with I>3σ(I). In the molecule, the [Mo3OS3] core is surrounded by two bridging OAc groups and two terminal chelate dtp groups attached to the {Mo3} triangle in a symmetric style, and the Py ligand is coordinated to the Mo atom at the apex of {Mo3} triangle with the nitrogen. This novel configuration is obtained for the first time with Mo—N bond length being 2.27 (2) Å and three Mo—Mo bond lengths 2.584 (4), 2.587 (4) and 2.657(4) Å, respectively. As a whole, the molecule has a virtual C2 symmetry.  相似文献   

16.
The crystal and molecular structure of the title compound (C18H26NOP) has been determined by a single crystal, x-ray diffraction study using Cu-Kα. radiation. The compound was found to crystallize in the orthorhombic space group Pnma with unit cell constants a = 12.686 ± .001 Å, b = 14.776 ± .001 Å, and c = 9.540 ± .001 Å. The structure was solved by the heavy atom method and refined by block-diagonal least-squares to a final R = 0.099 for the 696 statistically significant reflections. The compound exhibits orientational disorder in the crystalline state. Nevertheless, the planarity of this ring; the lengthening of the diene carbon-carbon bond to 1.41 Å the resultant shortening of both the carbon-nitrogen bond (1.43 Å) and the carbon-phosphorus bond (1.74 Å), and the CNC bond angle of 121° all strongly support the assumption of delocalization of the diene π-electrons within the heterocyclic ring system.  相似文献   

17.
The title compound, C7H8FO6PS·H2O, contains both phospho­nic and sulfonic acid functionalities. An extensive network of O—H?O hydrogen bonds is present in the crystal structure. The three acidic protons are associated with the phospho­nate group. Two protons experience typical hydrogen‐bond contacts with the sulfonate‐O atoms, while the third has a longer covalent bond of 1.05 (3) Å to the phospho­nate‐O atom and a short hydrogen‐bond contact of 1.38 (3) Å to the water O atom (all O—H?O angles are in the range 162–175°). The sulfonate group is positioned so that one S—O bond is nearly coplanar with the phenyl ring [torsion angle O—S—C—C ?8.6 (2)°]. The phospho­nate group is oriented approximately perpendicular to the ring [torsion angle P—C—C—C 99.2 (2)°] with one P—O bond anti to the benzyl C—C bond. The mol­ecules pack in layers in the bc plane with the water mol­ecules in between adjacent pairs of inverted layers.  相似文献   

18.
The title compound was obtained by reacting UO2 powder in 2 M K2CO3 with hydrogen peroxide. The compound contains individual [U(CO3)2O2(O2)]4− ions, which are linked via an extended network of K atoms and hydrogen bonding. The U atom is coordinated to two trans‐axial O atoms and six O atoms in the equatorial plane, forming distorted hexagonal bipyramids. The carbonate ligands are bound to the U center in a bidentate manner, with U—O bond distances ranging from 2.438 (5) to 2.488 (5) Å. The peroxo group forms a three‐membered ring with the U atom, with U—O bond distances of 2.256 (6) and 2.240 (6) Å. The U=O bond distances of 1.806 (5) and 1.817 (5) Å, and an O—U—O angle of 175.3 (3)° are characteristic of the linear uranyl(VI) unit.  相似文献   

19.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

20.
The title compound was prepared by the oxidation of MoCl3 in liquid phase. The crystal belongs to the orthorhombic system with space group D-Pmnb and unit cell parameters: a = 11.403 (1), b = 12.345 (2), c = 14.292 (2) Å; V = 2011.8 Å3; Z = 4, Dc = 2.396g/cm3. Altogether 2303 independent reflections were collected on a CAD-4 four-circle diffractometer with Mo radiation in range 2° ≤ θ ≤ 27°. The crystal structure was solved by heavy-atoms method and refined by full-matrix least-squares technique to final discrepancy factors R = 0.050 and Rw= 0.056 for 1513 reflections of I ≥ 3σ (I). The configuration of the cluster anion was characterized to be of the same Ml type structure as presented in the previous paper. The average bond lengths of Mo—Mo and Mo-(μ3-O) are 2.577 Å and 1.982 Å respectively. In addition, the effects of bridging atoms, other ligands and bond orders on Mo—Mo bonds are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号